Telescope star searching method and device based on image recognition and telescope

    公开(公告)号:US11847157B2

    公开(公告)日:2023-12-19

    申请号:US17275352

    申请日:2018-09-13

    Applicant: Jiazhi Chen

    Inventor: Jiazhi Chen

    Abstract: Provided is a telescope star searching method and device based on image recognition and telescope. The method includes: using a telescope to photograph a starry sky image; identifying a star in the starry sky image and matching a right ascension and a declination of the identified star according to a star database; obtaining a first altitude/azimuth angle according to photographing time of the starry sky image, a location of an imaging apparatus at the photographing time, and the right ascension and the declination of the identified star; matching a right ascension and a declination of a target star in the star database; obtaining a second altitude/azimuth angle according to current time, a current location of the imaging apparatus, and the right ascension and the declination of the target star; and adjusting the telescope from the first altitude/azimuth angle to the second altitude/azimuth.

    Method and device for photometrical charting of a license plate for a vehicle

    公开(公告)号:US11754439B2

    公开(公告)日:2023-09-12

    申请号:US17322804

    申请日:2021-05-17

    Abstract: The invention relates to a method for photometrical charting of a reflectance standard (Z) illuminated by a license plate light (1). A camera (4) releasable by a control unit (5) is arranged and aligned relative to a holding device (3) configured for holding a reflectance standard (Z) in such a way, that a luminance density image (B1, B2) recorded by the camera (4) at least covers the reflective surface (Z.1) of a reflectance standard (Z) held by the holding device (3). A license plate light (1) is arranged in a positioning device (2) which is movable by the control unit (5). The positioning device (2) is controlled by the control unit (5) in such a way that the license plate light (1) arranged therein is traversed to at least one position (P1, P2), optionally to multiple positions (P1, P2) sequentially, relative to the reflectance standard (Z) arranged in the holding device (3) and held there. In each position (P1, P2), recording of at least one luminance density image (B1, B2) is triggered. An overall image (B) is formed from the recorded luminance density images (B1, B2) recorded by the camera (4). Furthermore, the invention relates to an arrangement for performing this method.

    NON-POWER-DRIVEN PHOTOMETER INCLUDING MULTIPLE PHOTORECEIVERS

    公开(公告)号:US20170363463A1

    公开(公告)日:2017-12-21

    申请号:US15529216

    申请日:2015-11-23

    Applicant: Kyu Young Choi

    Abstract: A non-power-driven photometer is provided, the photometer comprising: a body; and multiple narrow angle photoreceivers (narrow angle probes) formed in the body, wherein the multiple narrow angle probes receive light in the atmosphere, which is incident over a range of different azimuth angles, and allow the characteristics of the atmosphere to be analyzed with reference to the relationship between the received light and the azimuth angle of the narrow angle probe corresponding to the received light. According to the present invention, since the photometer is driven without being supplied with power, light intensity measurement can be performed in a short time. Further, since light intensity measurement can be performed with no movement or only a short-distance movement of a vehicle or airplane equipped with the photometer, the problem of errors caused by differences in the time and location of measurement can be prevented.

    MULTI-DIRECTIONAL OPTICAL RECEIVER
    70.
    发明申请

    公开(公告)号:US20170363462A1

    公开(公告)日:2017-12-21

    申请号:US15532790

    申请日:2015-12-04

    Applicant: Jean Armstrong

    Abstract: An optical receiver (100) for detection of light from one or more sources (108) comprises an opaque layer (102) disposed on a first surface. An aperture (104) is formed in the opaque layer. An optical detector (106) has a detection region disposed on a second surface. The first and second surfaces are spaced apart from one another such that light passing through the aperture (104) illuminates a corresponding illumination region (110) on the second surface, and is detected by the optical detector (106) In the event that the detection region overlaps the illumination region. Multiple apertures may be formed in the opaque layer, and/or multiple optical detectors may be disposed on the second surface. The optical receiver may thereby enable optical signals originating at different locations to be detected, and distinguished, over a wide field of view.

Patent Agency Ranking