Abstract:
An optical device modulates radiation such as light from an extended object and focuses it onto a single detector in such a way that the modulation gives both spatial resolution of different points on the object and spectral resolution of light coming from each point on the object. The signal received by the detector can then be demodulated to reconstruct both the spatial and spectral properties of the initial extended object. A mask pattern is used, which can be variably exposed in successive steps to produce a cyclic encoding pattern in two dimensions. For an image resolved into p X m elements, the mask need only have (2p-1) (2m-1) elements, instead of p2 X m2 modulating elements.
Abstract:
INPUT AND/OR OUTPUT GATE FOR GRID-TYPE SPECTROMETER WITH A MULTIPLICITY OF SUBSTANTIALLY IDENTICALLY SHAPED, RANDOMLY DISTRIBUTED ZONES OF A RADIATION TRANSMISSIVITY DIFFERENT FROM THAT OF THE BACKGROUND, THE TOTAL AREA OF THE ZONES BEING PREFERABLY EQUAL TO THAT OF THE BACKGROUND OUTSIDE THE ZONES. THE ZONES EXTEND ONLY OVER A SMALL FRACTION OF THE OVERALL GRID SURFACE IN ANY DIMENSION AND, WHEN THE GRID IS TO BE USED AS A COMBINED INPUT AND OUTPUT GATE IN AN AUTOCOLLIMATING SPECTROMETER, MAY BE ARRANGED IN PAIRS SYMMETRICALLY POSITIONED WITH REFERENCE TO A COMMON CNETER.
Abstract:
An imaging device according to an aspect of the present disclosure is provided with: a light source that, in operation, emits pulsed light including components of different wavelengths; an encoding element that has regions each having different light transmittance, through which incident light from a target onto which the pulsed light has been irradiated is transmitted; a spectroscopic element that, in operation, causes the incident light transmitted through the regions to be dispersed into light rays in accordance with the wavelengths; and an image sensor that, in operation, receives the light rays dispersed by the spectroscopic element.
Abstract:
A method, non-transitory computer readable medium, and apparatus for calibrating a device using augmented data are disclosed. For example, the method measures k spectral values of each patch for a first plurality of patches generated by the device and a second plurality of patches generated by the reference device, creates a first augmented data set by selecting a delta (δ), wherein the first augmented data set comprises the δ applied k times to each one of the k spectral values of each one of the first plurality of patches, initializes initializing a function to create a second augmented data set for the reference device, solves the function to obtain a matrix of calibration values of the device that is based upon the first augmented data set and the second augmented data set and calibrates the device using the matrix of calibration values.
Abstract:
A spectrometer includes: a collimating element configured for collimating a beam of light into a first one of a cross-dispersing element and an echelle grating, the grating in optical communication with the cross-dispersing element; a focusing element for receiving the light from a second one of the cross-dispersing element and the echelle grating and focusing wavelengths of the light onto a spatial light modulator; the spatial light modulator configured for selectively directing the wavelengths onto a detector for detection. A method of use and the method of fabrication are provided.
Abstract:
Method and apparatus for analyzing radiation using analyzers and encoders employing the spatial modulation of radiation dispersed by wavelength or imaged along a line.
Abstract:
According to one aspect, an IR spectrometer includes a light source adapted to illuminate a sample, a grating adapted to spectrally disperse a light that has illuminated the sample, a MEMS array adapted to be electrostatically actuated by a controller to control a diffraction of the light, a detector configured to detect the light, and a power source adapted to supply power to the light source and to the MEMS array, wherein the controller is adapted to control the MEMS array so as to manage a power consumption of the IR spectrometer. In one embodiment, the IR spectrometer includes a housing sized and arranged to house the light source, the grating, the MEMS array, the controller, the detector, to and the power source in a hand-held device.
Abstract:
A chemometric analyzer for analyzing a plurality of analytes. The analyzer disperses radiation by wavelength along an encoding axis. The analyzer includes a spatial radiation modulator having a plurality of radiation filters. Each radiation filter modulates the intensity of a corresponding spectral component in the radiation.