Abstract:
A spectrometry device according to an aspect of the present invention is including a light source (101), a lens 104 concentrating a light beam from the light source (101) on a reference sample (120), an objective lens (106) concentrating a light beam that has passed through the first lens (104) on a measurement sample (121), a spectroscope (109) dispersing light having a different wavelength from that of the light beam generated in the measurement sample (121) and the reference sample (120) by irradiation of the light beam into a spectrum, a detector (110) detecting light that is dispersed by the spectroscope (109), and a beam splitter (103) separating an optical path of light from the reference sample (120) and the measurement sample (121) toward the spectroscope (109) from an optical path of a light beam that propagates from the light source (101) toward the measurement sample (121).
Abstract:
A method and apparatus are provided for identifying a material with a sample-specific reference spectral list or library. A sequential approach to SEM-EDS automated mineralogy classification is carried out by performing two or more material classification analyses. A pre-classification step restricts the processing of spectra deconvolution algorithms to a subset of spectra that pass a dominant mineral criteria resulting in a significantly reduced subset of reference spectra that occur within the measured sample in pure enough form at a given minimum quantity. The following complex classification stages involving deconvolution of multiple constituents within measured spectra is based on this sample relevant subset.
Abstract:
The invention relates to a method for correcting an optical signal produced by a sample comprising the following steps: illuminating a surface of the sample by a first light beam, produced by a first light source, the said first light source being coupled to a first optical system, focusing the said first light beam in an object focal plane of the first optical system, the said object focal plane being situated, in the sample, at a measuring depth z from the surface of the sample; measuring, with a first photodetector, of a first optical signal backscattered by the sample in response to the first light beam, the first photodetector producing a first measured signal representative of the said first optical signal, a spatial filter being interposed between the first optical system and the first photodetector, the spatial filter comprising a window which transmits the said first optical signal towards the said first photodetector, the window being disposed in a conjugate focal plane of the object focal plane of the first optical system; wherein the method also comprises the following steps: determining an optical scattering property of the sample; applying a correction function to the first measured signal so as to generate a first corrected signal, the said correction function taking into account the said optical scattering property.
Abstract:
We describe a method for detection of the presence of an invertebrate or an invertebrate component in a sample of substantially non invertebrate material, comprising impinging said sample with a source of electromagnetic radiation at a wavelength of at least 600 nm and detecting Raman scattering/fluorescence of said invertebrate or a component of said invertebrate at a wavenumber where the non-invertebrate components of said sample either do not fluoresce or fluoresce with sufficiently low intensity wherein the non invertebrate material is edible and/or living.
Abstract:
An integrated Raman spectrum measurement system and a modularized laser module are provided. The modularized laser module includes a laser emitter and an axis adjustment mechanism. The laser emitter is configured to emit a laser beam. The axis adjustment mechanism is connected to the laser emitter and configured to adjust at least two parameters of axis and orientation of the laser emitter. A beam splitter is disposed on the path of the laser beam. A signal collection unit is for collecting at least a part of a signal light from the beam splitter, wherein the signal light is converting by an object after receiving the part of the laser beam.
Abstract:
An apparatus comprises a semiconductor single-photon avalanche detector, and a counter. The detector performs detections of photons of optical radiation caused by an optical excitation pulse to the object. The counter measures timing of each detection made in the detector with respect to the excitation pulse causing the detected photons, and performs at least one of the following: forming a number of Raman detections, forming a number of fluorescence detections. Forming the number of the Raman detections is performed by eliminating an estimate of a number of fluorescence photons in the measurement. Forming the number of the fluorescence detections is performed by eliminating an estimate of a number of Raman photons in the measurement. The estimates are formed in a predetermined manner from the number and timing of the detections.
Abstract:
The present invention includes an apparatus (10) and method for detecting nitrogen gas comprising: a conduit (12) for a gas sample (16); one or more hollow core photonic crystal fibers HC-PCF (20) having a proximal portion and a distal portion, wherein the proximal portion is in communication with the gas sample (16) in the conduit (12); a laser (14) positioned to strike the gas sample (16) in the conduit (12) and opposite the one or more hollow core photonic crystal fibers (20); and a Raman spectra detector (30) connected to the distal portion of the hollow core photonic crystal fibers (20), wherein a Raman spectra is generated when the laser (14) strikes the gas sample (16) that is detected by the Raman spectra detector (30).
Abstract:
A spectrometer chip for analyzing a fluid sample and a method of manufacturing the spectrometer chip are provided. The spectrometer chip includes a cell comprising a chamber in which the fluid sample is accommodated, and a spectrometer comprising a channel of silicon nitride, the channel being configured to resonate and transmit light that is emitted from the fluid sample, and the spectrometer being disposed on a surface of the cell. The spectrometer chip further includes a detector configured to detect the transmitted light.
Abstract:
An apparatus comprises: a microscope objective focused on a microscope field of view; a light source including a laser generating an astigmatic beam and optics configured to couple the astigmatic beam into the microscope objective to produce high aspect ratio illumination at the microscope field of view; and a data acquisition system configured to generate data pertaining to light emanating from the microscope field of view responsive to the high aspect ratio illumination. The apparatus may be a Raman spectroscopy system. The laser may be an edge emitting laser. The optics of the light source may include an aspherical lens arranged to compensate the astigmatism of the astigmatic beam. The optics of the light source may include a diffraction grating arranged respective to the laser to provide feedback reducing a spectral full width at half maximum (FWHM) of the astigmatic beam.
Abstract:
An improved evaluation circuit which allows high sensitivity in an economical manner. For this purpose, a shift register having at least one data input, a clock input, a plurality of register stages and at least one data output is provided, wherein the output of the analog-to-digital converter is connected to the data input of the shift register. With a shift register, fluorescent light and scattered light can be temporally distinguished in an economical manner.