Abstract:
A gripping device 18 is provided at the front end of an arm of an assembly robot 2. The gripping device 18 includes a pair of grippers 20 and 22 capable of opening and closing. The side configured to come into contact with a part 4, of each gripper 20, 22 includes a pressure-sensitive sensor 24. The pressure-sensitive sensor 24 includes a first electrode and a second electrode serving as a pair of electrodes and an intermediate layer formed of rubber or a rubber composition between the pair of electrodes. The intermediate layer is configured to generate electricity when deformed by contact with an object (part 4). The side configured to come into contact with the object, of the intermediate layer is subjected to a surface modification treatment and has a higher hardness than the opposite side.
Abstract:
A tension measuring apparatus includes a displacement part that is displaced in accordance with tension or a change of the tension of a wire rod to be measured when the displacement part is caused to abut against the wire rod to receive the tension of the wire rod, an elastic body that is elastically deformed in accordance with displacement of the displacement part, and a heat flow sensor that detects a heat flow caused by elastic deformation of the elastic body.
Abstract:
A method of processing a liquid material. The method includes mixing a liquid material with a solvent, wherein the solvent has a constituent capable of coating the particles of the material. The liquid material mixed with the solvent is then particlized, deposited on a substrate and activated to form a pre-defined electrically conductive pattern. Particlization methods include sonication and the deposition methods include ink-jet printing. Activation methods include applying mechanical pressure. The method can be used to produce electronic devices. The electronic devices made by the method include strain gauges. The substrates utilized for making the electronic devices utilizing the method can be wearable or stretchable or both.
Abstract:
A stress compensated oscillator circuitry comprises a sensor arrangement for providing a sensor output signal SSensor, wherein the sensor output signal SSensor is based on an instantaneous stress or strain component a in the semiconductor substrate, a processing arrangement for processing the sensor output signal SSensor and providing a control signal SControl depending on the instantaneous stress or strain component σ in the semiconductor substrate, and an oscillator arrangement for providing an oscillator output signal Sosc having an oscillator frequency fosc based on the control signal SControl, wherein the control signal SControl controls the oscillator output signal Sosc, and wherein the control signal SControl reduces the influence of the instantaneous stress or strain component σ in the semiconductor substrate onto the oscillator output signal Sosc, so that the oscillator circuitry provides a stress compensated oscillator output signal.
Abstract:
A triboelectric power system includes a triboelectric generator, a rechargeable energy storage unit and a power management circuit. The rechargeable energy storage unit is associated to the triboelectric generator. The power management circuit is configured to receive an input current from the triboelectric generator and to deliver an output current corresponding to the input current to the rechargeable battery so that the output current has a current direction and a voltage that will recharge the rechargeable battery.
Abstract:
A sensing device including a sensor, a triggering mechanism is provided. The sensing device is attachable to a covering positioned in contact with a body such that the triggering mechanism extends between first and second segments of the body. Movement of at least one of the first and second segments activates the triggering mechanism to provide an input to the sensor, actuating the sensor to generate an output defining at least one measurement of the movement. The measurement may be one or more of rotation, translation, velocity, acceleration, and joint angle. An intermediate mechanism may be interposed between the triggering mechanism and the sensor. The sensing device may include a means to process or record measurements corresponding to movement. A system and method of measuring the movement is also provided.
Abstract:
The present invention relates to a method of determining both pressures and temperatures in a high temperature environment. The present invention also relates to a method of determining temperatures about a pressure-sensing element using a bi-functional heater. In addition, the present invention preferably relates to a pressure sensor with the pressure-sensing element and a heating element both integrated into the sensor's packaging, preferably onto the diaphragm of the pressure sensor, and particularly to such a pressure sensor capable of operating at high or elevated temperatures, and even more particularly to such a pressure sensor wherein the heating element is capable of both heating, at least in part, the pressure-sensing element and monitoring the temperature of the application area. Preferably, the pressure-sensing element is formed from shape memory alloy (SMA) materials that can be used at high or elevated temperatures as a pressure sensor with high sensitivity.
Abstract:
A method for estimating stress of an electronic component. An electronic component including first and second elements and conductive bumps is provided. Each conductive bump has two surfaces connected to the first and second elements respectively. Two adjacent conductive bumps have a pitch therebetween. The conductive bumps includes a first conductive bump and second conductive bumps. A stress value of the first conductive bump related to a testing parameter is calculated. A stress value of each second conductive bump related to the testing parameter is calculated according to a first calculating formula. The first calculating formula is σ 2 = L D - 2 r σ 1 , σ2 is the stress of each second conductive bump, L is a beeline distance between each second conductive bump and the first conductive bump, D is an average value of the pitches of the conductive bumps, r is a radius of each surface, and σ1 is the stress value of the first conductive bump.
Abstract:
A method for ascertaining deformations of a geometric body or for measuring forces or torques acting thereon using force measuring sensors or deformation measuring sensors. A plurality of such sensors are arranged on the geometric body in at least two groups. A first group of sensors registers forces acting on the geometric body or deformations of the geometric body in a first spatial direction with reference to a coordinate system fixed relative to the geometric body. A second group of sensors registers forces acting on the geometric body or deformations thereof in a second spatial direction with reference to the coordinate system fixed relative to the geometric body, which is independent of the first spatial direction. Signal outputs of the sensors are compared to one another for the purpose of registering and evaluating signals and for determining or assessing force components or deformation components acting in different spatial directions.
Abstract:
A tensile stress measurement device is to be attached to an object to be measured. The tensile stress measurement device may include an IC having a semiconductor substrate and tensile stress detection circuitry, the semiconductor substrate having opposing first and second attachment areas. The tensile stress measurement device may include a first attachment plate coupled to the first attachment area and extending outwardly to be attached to the object to be measured, and a second attachment plate coupled to the second attachment area and extending outwardly to be attached to the object to be measured. The tensile stress detection circuitry may be configured to detect a tensile stress imparted on the first and second attachment plates when attached to the object to be measured.