Abstract:
In one embodiment, a self-powered tactile pressure sensor includes a flexible substrate, an array of piezoelectric crystalline nanorods each having a bottom end and a top end, the nanorods being generally perpendicular to the substrate, a top electrode that is electrically coupled to the top ends of the nanorods, and a bottom electrode that is electrically coupled to the bottom ends of the nanorods.
Abstract:
An end effector base and a finger unit are formed as separate members, and are disposed with a space therebetween. A force sensor is fixed to a finger base of the finger unit, and is disposed with a space between it and the end effector base. Three supporting members are supported by the end effector base, and are configured to be able to be moved by the driving of a driving unit to a position where they support the force sensor and a position where they are separated from the force sensor and support the finger unit.
Abstract:
A capacitive shear force sensor and a method for fabricating thereof are provided. The capacitive shear force sensor includes a first electric field shielding layer, a second electric field shielding layer, a driving electrode, a first sensing electrode, a second sensing electrode and a dielectric layer. The second electric field shielding layer is disposed under the first electric field shielding layer. The driving electrode is disposed between the first electric field shielding layer and the second electric field shielding layer. The first and the second sensing electrodes are disposed between the driving electrode and the second electric field shielding layer. The dielectric layer is disposed between the driving electrode and the first sensing electrode, and between the driving electrode and the second sensing electrode. The first sensing electrode and the driving electrode form a first capacitor. The second sensing electrode and the driving electrode form a second capacitor.
Abstract:
A pressure sensor includes: a supporting body which has an opening; a pressure detecting portion which includes a supporting film provided on the supporting body and having a diaphragm portion closing the opening, and a piezoelectric body provided on the diaphragm portion and deflecting to output an electric signal; a frame body which has, on the pressure detecting portion, a cylindrical cavity along a film thickness direction of the supporting film, and is formed, in plan view when viewed from the film thickness direction of the supporting film, at a position where a cylindrical inner peripheral wall of the cavity overlaps with the opening, or outside of the opening; a sealing film which closes the frame body; and a silicone oil which is filled in an inner space formed of the cylindrical inner peripheral wall of the cavity, the sealing film, and the pressure detecting portion.
Abstract:
This invention relates to force/torque sensor and more particularly to multi-axis force/torque sensor and the methods of use for directly teaching a task to a mechatronic manipulator. The force/torque sensor has a casing, an outer frame forming part of or connected to the casing, an inner frame forming part of or connected to the casing, a compliant member connecting the outer frame to the inner frame, and one or more measurement elements mounted in the casing for measuring compliance of the compliant member when a force or torque is applied between the outer frame and the inner frame.
Abstract:
A sensor element includes a piezoelectric substrate made of a trigonal single crystal and an electrode arranged on the piezoelectric substrate. The substrate surface of the piezoelectric substrate includes an electrical axis of crystal axes. An angle θ formed by the substrate surface and a plane including the electrical axis and an optical axis of the crystal axes is 0°
Abstract:
A detection device includes: a detecting unit having a first substrate on which a plurality of pressure sensors are disposed around a reference point and a second substrate on which is formed an elastic projection whose center of gravity is positioned in a position overlapping with the reference point and that elastically deforms due to an external force in a state in which the tip of the elastic projection makes contact with the first substrate; and a controller that carries out detection operations for detecting the presence/absence of the external force based on pressure values detected by at least one of the plurality of pressure sensors, and controls the next detection operations of the detection unit based on the result of the previous detection.
Abstract:
Various technologies described herein pertain to a tactile sensor that senses normal load and/or shear load. The tactile sensor includes a first layer and an optically transparent layer bonded together. At least a portion of the first layer is made of optically reflective material. The optically transparent layer is made of resilient material (e.g., clear silicone rubber). The tactile sensor includes light emitter/light detector pair(s), which respectively detect either normal load or shear load. Light emitter(s) emit light that traverses through the optically transparent layer and reflects off optically reflective material of the first layer, and light detector(s) detect and measure intensity of reflected light. When a normal load is applied, the optically transparent layer compresses, causing a change in reflected light intensity. When shear load is applied, a boundary between optically reflective material and optically absorptive material is laterally displaced, causing a change in reflected light intensity.
Abstract:
The features of the system are: fiber optic cables (instead of human sensory receptor) and low cost CMOS or CCD image sensor (which can be found in a conventional webcam, camcorder, digital camera etc.) are used by pairing each pixel of the image sensor with corresponding fiber optic cable, which is assured to transfer all light beams to the processor on a single photo frame where the coordinates and the level of displacements are detected precisely by the aid of image processing techniques, in order to provide tactile sensing. The system can work with a computer or it can work individually with an electronically circuit that contains an independent processor.
Abstract:
A bend sensor is used to determine force applied to a robotic arm. The force may be an external force applied to the arm, an internal actuation force, or both. In some aspects, a stiffening element is used to restore the arm to a minimum kinematic energy state. In other aspects, the stiffening element is eliminated, and the arm is fully actuated.