Abstract:
A following apparatus which follows a target object while photographing the target object includes a driving apparatus configured to move a main body, a photographing portion configured to continuously photograph the target object, and a controller configured to obtain an area value of the target object in a live-view motion picture from the photographing portion, obtain a distance value according to the obtained area value, and control the driving apparatus to maintain a distance between the photographing portion and the target object at a reference distance value according to the obtained distance value.
Abstract:
A system is disclosed for autonomously removing waste from a plurality of receptacles at separate locations within a service area. The system may include a service vehicle, and a plurality of transporters. The plurality of transporters may be configured to autonomously move the plurality of receptacles to the service vehicle.
Abstract:
An aircraft is provided and includes a frame, drive elements configured to drive movements of the frame and a computer configured to receive mission planning and manual commands and to control operations of the drive elements to operate in a safe mode in which mission commands are accepted but manual commands are refused, a manual mode in which mission commands are refused but manual commands are accepted and an enroute mode. The computer is further configured to only allow mode transitions between the safe and manual modes and between the safe and enroute modes.
Abstract:
The present teachings provide an autonomous mobile robot that includes a drive configured to maneuver the robot over a ground surface within an operating environment; a camera mounted on the robot having a field of view including the floor adjacent the mobile robot in the drive direction of the mobile robot; a frame buffer that stores image frames obtained by the camera while the mobile robot is driving; and a memory device configured to store a learned data set of a plurality of descriptors corresponding to pixel patches in image frames corresponding to portions of the operating environment and determined by mobile robot sensor events.
Abstract:
In a driving support device for a vehicle including a collision avoidance support system and a lane travel support system, a steering control amount is set while maintaining an appropriate relationship between both of the systems. A collision avoidance support control unit is configured to calculate a steering torque command value (Tr1(n)) in accordance with a first characteristic in which an upper limit value (Trmax1) and a gradient (K1) are set. A lane travel support control unit is configured to calculate a steering torque command value (Tr2(n)) in accordance with a second characteristic in which an upper limit value (Trmax2) and a gradient (K2) are set. The upper limit value (Trmax1) is set to a value less than the upper limit value (Trmax2), and the gradient (K1) is set to a value more than the gradient (K2).
Abstract:
A device for maneuvering and immobilizing an aircraft on the ground. Included in the device is a moving apparatus and a remote control configured for remotely controlling the moving apparatus. The device allows a coupling of a single remote control with several moving apparatuses and/or of one moving apparatus with several remote controls. Also, the device allows an operator equipped with a remote control to remotely control several pushback maneuvers by successively using several moving apparatuses or several operators each equipped with a remote control to successively control the same moving apparatus.
Abstract:
An aircraft is provided and includes a frame, drive elements configured to drive movements of the frame and a computer configured to receive mission planning and manual commands and to control operations of the drive elements to operate in a safe mode in which mission commands are accepted but manual commands are refused, a manual mode in which mission commands are refused but manual commands are accepted and an enroute mode. The computer is further configured to only allow mode transitions between the safe and manual modes and between the safe and enroute modes.
Abstract:
The present invention provides a swarm of robots and a related method of operating the swarm. The robots are programmed to start at a nest and to select a dispersal direction from a uniform random distribution. The robots travel along the dispersal direction until transitioning to a search mode upon reaching a search site, where the robot performs a correlated random walk with fixed step size and direction and using a standard deviation to determine how correlated the direction of the next step of the robot is with the direction of the previous step. If no resource is found within predetermined time t independently determined by each of said robots, the robot returns to the nest and repeats the above steps.
Abstract:
In a method for operating a system for intralogistic transport and system, the system having subscribers, in particular vehicles, which are connected via a data transmission channel such that each subscriber is a subscriber of a group of subscribers connected for data transmission via the data transmission channel, the data transmission being in particular not real-time capable, the data transmission channel being in particular a WLAN connection, each subscriber having a time base, in particular a clock, a group is formed; the time base of each subscriber of the group is synchronized, that is, in particular the time of the time base of the subscriber modified by a specific time offset by the synchronization is used as the time for operation; and subscribers are moved in dependence on a respective subscriber functioning as a master or in mutual dependence, in particular the position activated by the respective subscriber, in particular at the respective point in time, depending on the respective position of at least one other subscriber of the group or on the respective position of multiple or all other subscribers of the group.
Abstract:
In one embodiment, a method for responding to a detected event by a robot is provided. The method includes using a sensor to detect an event within an operational space of a robot. The event includes a movement of an object or a person within the operational space. The method also includes using a processor to predict an action to occur within the operational space of the robot based upon the detected event. The method also identifies at least one correlated robot action to be taken in response to the detected event and compares the predicted action to a movement plan of the robot. The method further selects at least one of the correlated robot actions and modifies a movement plan of a robot to include at least one of the identified correlated robot actions in response to the detected event.