Abstract:
Barrier ribs 18 formed on a back substrate PA2 are brought into contact with a bonding paste layer 40 having an even surface, applying a bonding agent Bd evenly to the tops of the barrier ribs.Furthermore, a gas discharge panel having a structure in which discharge mainly occurs at locations distanced from parts of the panel connected using the bonding agent Bd is realized.
Abstract:
A PDP with superior light-emitting characteristics and color reproduction is achieved by setting the chromaticity coordinate y (the CIE color specification) of light to 0.08 or less, more preferably to 0.07 or less, or 0.06 or less, enabling the color temperature of light to be set to 7,000K or more, and further to 8,000K or more, 9,000K or more, or 10,000K or more. The PDP is manufactured by a method in which the processes for heating the fluorescent substances such as the fluorescent substance baking, sealing material temporary baking, bonding, and exhausting processes are performed in the dry gas atmosphere, or in an atmosphere in which a dry gas is circulated at a pressure lower than the atmospheric pressure. This PDP is also manufactured by: a method in which after the front and back panels are bonded together, the exhausting process for exhausting gas from the inner space between panels is started while the panels are not cooled to room temperature; or a method in which after the front and back panels are temporarily baked, the process for bonding the panels is started while the panels are not cooled to room temperature. This reduces the time and energy required for heating, resulting in reduction of manufacturing cost.
Abstract:
A manufacturing method for a wiring substrate for a display panel having a plurality of wiring electrodes thereon includes the step of forming wirings in an orthogonal projection area of an image forming member onto the wiring substrate by photolithography using a photo paste. In addition, wires are formed in an area where the frame member is disposed by pattern printing using paste ink for printing.
Abstract:
The present invention relates to plasma display panel and manufacturing method thereof to simplify the manufacturing steps and reduce cost of production. In the present invention, a black layer formed between a transparent electrode and a bus electrode is formed together with a black matrix at the same time. In this case, the black layer is formed together with the black matrix in one. Cheap nonconductive oxide is used as a black powder of a black layer. Specifically, in case the black layer and the black matrix are formed in one, the bus electrode is shifted to a non-discharge area to improve the brightness of the plasma display panel.
Abstract:
A plasma display panel and a method of manufacturing the same are provided to prevent data electrode from being reacted with the sodium component contained in a back glass to change its color or to be cut while the data electrodes are formed on a back plate constructing the plasma display panel, thereby improving the quality of the back plate. The plasma display panel includes a front plate constructed in a manner that a plurality of scan electrodes and sustain electrodes, a first dielectric layer and a protection layer are sequentially formed on a glass substrate, a back plate constructed in a manner that a plurality of data electrodes are formed on a glass substrate, barriers formed between the front and back plates to define discharge cells, and fluorescent materials formed between the barriers. The plasma display panel further has a transparent electrode layer that is at least partially formed between the glass substrate of the back plate and the data electrodes. According to the present invention, a supporting force sufficient for preventing cutting and deformation of the data electrodes is provided and the data electrodes are maintained in a uniform shape to improve the quality of the plasma display panel.
Abstract:
The present invention provides a gas discharge panel on which color images are accurately displayed and which is easy to manufacture. The first and the second substrates face each other across an interval, forming a discharge space in between, which is filled with a discharge gas. Pairs of electrodes for sustaining discharge are provided on at least one of the two substrates, and phosphor layers are formed on the first substrate, arranged along the electrode pairs to form a matrix of discharge cells. An image is displayed by selectively illuminating discharge cells. Gap members having a given shape are provided between the first and second substrates at locations corresponding to the boundaries between discharge cells.
Abstract:
A manufacturing method for a plasma display panel and a manufacturing method for a plasma display which can improve the purity of a discharge gas in a discharge space after combining panels and sealing the discharge gas into the discharge space, so that the lifetime can be extended and the discharge voltage can be reduced to improve the stability of the discharge voltage. After forming ribs (24) for partitioning discharge spaces (4) and phosphor layers (25R), (25G), and (25B) for emitting light according to ultraviolet rays produced in the discharge spaces (4) on a second substrate (21), the second substrate (21) formed with the ribs (24) and the phosphor layers is burned in a vacuum of 10 Pa or less in a temperature range of 350 to 550null C. Thereafter, the second substrate (21) is combined with a first panel (11) to complete a plasma display (2).
Abstract:
An improved light-emitting panel having a plurality of micro-components sandwiched between two substrates is disclosed. Each micro-component contains a gas or gas-mixture capable of ionization when a sufficiently large voltage is supplied across the micro-component via at least two electrodes. An improved method of manufacturing a light-emitting panel is also disclosed, which uses a web fabrication process to manufacturing light-emitting displays as part of a high-speed, continuous inline process.
Abstract:
A plasma display panel includes a front glass substrate and a rear glass substrate coupled to each other by a sealing material coated at edges of the front and rear glass substrates, first and second electrodes disposed perpendicular to each other on opposing inner surfaces of the front and rear glass substrates facing each other, a dielectric layer formed on each of the opposing inner surfaces of the front and rear glass substrates to cover the first and second electrodes, partitions formed on an upper surface of the dielectric layer of the rear glass substrate, red, green and blue fluorescent substances coated between the partitions, and a non-light emitting zone filling portion formed by filling a non-light emitting zone existing between the outermost one of the partitions and the sealing material with a material used for one of the partitions.
Abstract:
An image display appratus is manufactured by processing a panel member through a plurality of chambers including ones for a bake processing and a getter processing. The getter processng is performed at a temperature lower than a temperature of the panel member subjected to the bake processing, to prevent degrading of a getter film.