Abstract:
A fuel cell stack having a plurality of connected modules. Each module includes an elongate hollow member and at least one passage extending through the hollow member. Each hollow member has a first flat surface and a second flat surface arranged parallel to the first flat surface. A first module includes a plurality of fuel cells arranged on at least one of the first and second flat surfaces. A first end of each module has an integral spacer and the modules are connected by the spacer of a first module contacting a second end of a second module.
Abstract:
In order to improve a power density of a fuel cell and prevent a generation of a poor insulation, an insulator is provided, which is disposed between a current collector disposed in contact with one end of a stacked body having a plurality of stacked unit cells in stacking directions, and an end member disposed outside from the current collector in the stacking directions, and includes a plurality of insulator members, each having a sheet-like planar portion. The plurality of insulator members which are stacked onto each other by the planar portions thereof are disposed oppose to the current collector.
Abstract:
A method for manufacturing a fuel cell which includes layering and compression molding at least one of each of: thermoplastic resin sheets (A) containing 130 to 3,200 parts by weight of a carbonaceous material per 100 parts by weight of a thermoplastic resin; and thermoplastic resin sheets (B) containing 3 to 280 parts by weight of a carbonaceous material per 100 parts by weight of a thermoplastic resin, 50% to 100% by weight of the carbonaceous material being fibrous carbon. The thermoplastic resin sheets (A and B) are compression molded at a temperature 60° C. higher than the higher of the melting points of the two types of sheets such that the ratio between the final thickness (dA) of the compressed first thermoplastic resin sheet(s) (A) and the final thickness (dB) of the compressed second thermoplastic resin sheet(s) (B) satisfies the relation dA/dB≧2.
Abstract:
Methods for fabricating an interconnect for a fuel cell stack include placing a compressed metal powder interconnect on a porous support, and sintering the interconnect in the presence of a non-oxidizing gas. The method may further include placing the sintered interconnect on a porous support, and oxidizing the interconnect in the presence of flowing air, or placing the sintered interconnect on a dense, non-porous support, and oxidizing the interconnect in the presence of a gas comprising pure oxygen or an oxygen/inert gas mixture that is substantially nitrogen-free.
Abstract:
The present invention discloses a fuel cell, oxygen generator or high temperature electrolyzer comprising a metallic substrate comprising: (i) at least one porous region comprising a plurality of pores in said metallic substrate, where the porosity varies in at least one direction substantially coincident with the path or paths of a reactant stream to be passed over the substrate when in use and/or in areas of in-use poor gas flow; and (ii) at least one non-porous region bounding the at least one porous region, and having mounted on said metallic substrate an electrode of said fuel cell, oxygen generator or high temperature electrolyzer. Also disclosed are fuel cell stack layers and fuel cell stacks comprising same.
Abstract:
A solid oxide fuel cell having a coupling structure, the solid oxide fuel cell including a plurality of cells, each cell having a cell cap at an end thereof; and the coupling structure, the coupling structure connecting the plurality of cells, wherein the coupling structure includes a connector, the connector including an insulating portion at a center thereof, and coupling portions adjacent to the insulating portion at respective sides of the insulating portion and coupled to the cell caps.
Abstract:
The present invention provides an electricity storing/discharging device with single-layer folding covering and packaging single input/output electric conductive interface having electrode plate pair with multiple-sided electric conductive terminals, which is applied in a specified single-layer folding covering and packaging structure having electrode plate pair with multiple-sided electric conductive terminals, so the electrode plate pair with multiple-sided electric conductive terminals after being covered and packaged is able to be structured as a single input/output electric conductive interface through single input/output electric conductive terminal having positive and negative polarity for transferring electric energy to the exterior.
Abstract:
A fuel cell system has a plurality of individual fuel cells which are combined into a stack, where each of the individual fuel cells has a substantially planar membrane-electrode unit, two gas diffusion layers in the form of a fiber structure and of a bipolar plate, which establishes the electrical connection to the adjacent individual fuel cell that is located above or below. The gas diffusion layers adjoin the larger surfaces of the membrane electrode unit, which are located opposite of one another, and the bipolar plate comprises an active region surrounded by an edge region. In addition, the bipolar plates in the active region have a completely flat design so that the gas-carrying region is formed exclusively by the gas diffusion layers, what amounts to at least 60% of the height of an individual fuel cell.
Abstract:
A fuel cell has a membrane electrode assembly and a supply member for supplying an anode fluid to the membrane electrode assembly. The membrane electrode assembly has an electrolyte membrane and an anode catalyst. The supply member has at least one anode fluid flow path for supplying the anode fluid toward the membrane electrode assembly. A gas diffusion layer is provided between the supply member and the membrane electrode assembly. An opening of the at least one anode fluid flow path on a discharge side thereof for the anode fluid is disposed in contact with a side of the gas diffusion layer facing the supply member. The side of the gas diffusion layer includes a region that stores a gas pushed by the supply of the anode fluid.
Abstract:
A fuel cell sealing structure has a power generating body, and first and second separators arranged in both sides in a thickness direction of the power generating body. On a surface in one side in a thickness direction of the first separator, formed integrally first and second sealing protrusions respectively brought into close contact with an outer peripheral portion of the power generating body and the second separator in an outer peripheral side of the first sealing protrusion, and a short circuit prevention rib protruding in line with the first and second sealing protrusions by an electrically insulating rubber-like elastic material. On a surface in another side thereof, formed integrally a third sealing protrusion brought into close contact with a surface in an opposite side to the power generating body in the second separator, by the electrically insulating rubber-like elastic material.