Abstract:
In the hybrid vehicle, a boost converter is controlled to make a post-boost voltage or a voltage on the side of an inverter become a target post-boost voltage corresponding to a target operation point of a motor in accordance with a target post-boost voltage setting map that divides an operation region of the motor into a non-boost region and a boost region when a operation point of the motor is included in the boost region. The target post-boost voltage setting map is prepared so that the non-boost region includes a region in which a loss produced by driving the motor when not boosting the post-boost voltages becomes smaller than the loss produced when boosting the post-boost voltage and the boost region includes a region in which the loss produced when boosting the post-boost voltage becomes smaller than the loss produced when not boosting the post-boost voltage.
Abstract:
A method and an apparatus for damping voltage oscillation of a voltage intermediate circuit of a frequency converter, the frequency converter comprising a half controlled rectifier bridge coupled to a supply network. The method comprises determining magnitude (Uc) of voltage of the voltage intermediate circuit, determining magnitude (Uin) of rectified voltage of the supply network, forming a derivative of a difference (Uin−Uc) between the rectified voltage of the supply network and the voltage of the voltage intermediate circuit, delaying firing of controllable components of the rectifier bridge on the basis of the formed derivative.
Abstract:
Systems and methods for improved Variable Speed Drives having active inverters include an input filter for filtering common mode and differential mode currents. A three-phase inductor has three windings, each winding of the three-phase inductor having a center tap dividing each winding into a pair of inductor sections; and a three-phase input capacitor bank connected in a wye configuration to the three center taps at one end, and to a common point at the opposite end. The three-phase input capacitor bank provides a short circuit for frequencies above a predetermined fundamental frequency for shunting such frequencies through the three phase capacitor bank, while passing the predetermined fundamental frequency to an input AC power source.
Abstract:
On end of a reactor (L1) is connected to a positive electrode of a battery (B1) and the other end is connected to a power line via a transistor (Q1) and to the ground via a transistor (Q2). By PWM control of the transistors (Q1, Q2), an arbitrary increased voltage is obtained in the power line. It is possible to obtain an optimal inverter input voltage (power line voltage) according to the motor drive state, thereby increasing efficiency. Thus, it is possible to optimize the inverter input voltage according to the motor drive condition.
Abstract:
An apparatus for controlling a synchronous generator having a converter. A voltage detector detects a terminal voltage of a stator of the synchronous generator. A current detector detects a current flowing through the stator. A rotor position estimating part estimates a rotor position of the synchronous generator from the detected voltage and current. An active power detector detects a active power of the synchronous generator. A reactive power detector detects a reactive power of the synchronous generator or a terminal voltage detector detects an effective value of a terminal voltage of the stator. An active power controller adjusts a q-axis current command to control the active power, and a reactive power controller or terminal voltage controller adjusts a d-axis current command to control the reactive power or terminal voltage.
Abstract:
A motor control apparatus for a sewing machine includes an adjustable speed setter for generating a speed set signal. A first memory stores a plurality of reference values each defining a reference region into which the speed set signal can fall. A second memory stores speed setpoint values corresponding to the reference regions. A central processing unit selects one of the reference regions by comparing the speed set signal with the reference values and selects the corresponding speed setpoint value from the second memory. A motor is controlled to run at the selected speed setpoint value.
Abstract:
An induction motor drive including a current source inverter system having controlled turn on and turn off semiconductors in a load side inverter selectively places notches in the waveshape of the current supplied to the parallel combination of the motor and a capacitor bank for the minimization of harmonics.
Abstract:
A reactive power processing circuit for a current source GTO invertor in which a reactive current generated from a load of the GTO invertor is rectified by means of a fly wheel circuit and is sent to a capacitor so as to store a commutation surge voltage generated whenever a commutation of the invertor occurs, an excessive charge voltage across the capacitor is regenerated to a direct current output side of a power rectifier, and a pair of GTO (Gate Turn Off Thyristors) thyristors are connected between the capacitor and the direct current output side of the power rectifier in their forward directions so as to carry out a discharge operation for the excessive charge voltage across the capacitor. Consequently, with the number of circuit elements remarkably reduced, the reactive power processing at times of a high-frequency operation and acceleration/deceleration (variable speed) operation of the invertor can be achieved.
Abstract:
A drive motor for each loom is selectively connected to a given commercial frequency power source for high speed rotation at normal running of the loom and to a low frequency power unit for low speed rotation at inching operation, thereby assuring accurate inching operation with cheap cost on looms under mass drive condition.
Abstract:
Stabilized operation of an inverter and an a-c motor, driven by the inverter, is obtained in the presence of sudden undesired load changes by controlling the inverter so that both the amplitude and frequency of the inverter output a-c voltage will be functions of, and will vary directly with, the d-c bus voltage, with the result that anytime an abrupt abnormal load change causes the d-c bus voltage to vary, a frequency change occurs to compensate for the load change and to stabilize the bus voltage. By employing the d-c bus voltage to regulate the inverter frequency, if there is a sudden decrease, for example, in the mechanical load on the motor, the d-c bus voltage, which will tend to increase, causes the frequency of the inverter output voltage to increase, thereby increasing the motor speed so that the electrical load change across the d-c bus is reduced. As a result, the d-c bus voltage tends to remain relatively constant in spite of the abrupt mechanical load change. When there is a normal variation in load demand, necessitating a different steady state motor speed, a set point or reference voltage may be adjusted to change the amplitude and frequency of the inverter output voltage to the levels needed to drive the motor at the new required speed.