Abstract:
Multi-carrier modulation fiber optic systems constructed using a series of electrical carriers, modulating the data on the electrical carriers and combining the carriers to form a wideband signal. The wideband signal can then be intensity modulated on a laser and coupled to a fiber optic channel. A receiver may then receive the laser signal from the fiber optic channel and convert it into an electrical signal. Multi-carrier modulation may be applied to existing fiber channels, which may be of lower quality. Existing fiber channels may have characteristics which prevent or restrict the transmission of data using intensity modulation at certain frequencies. An adaptive multi-carrier modulation transmitter may characterize an existing fiber optic channel and ascertain the overall characteristics of the channel. The transmitter and receiver can then be configured to use various bandwidths and various modulations in order to match the transfer characteristic of the fiber channel. A series of adaptive multi-carrier modulation transmitters and receivers can be integrated on a single integrated circuit. If multiple adaptive receivers and transmitters are integrated on a single integrated circuit, they may be used to upgrade existing networks by adding different wavelength lasers for the transmission of data in order to achieve any capacity desired. Each receiver and transmitter may characterize the fiber for its particular wavelength laser and may configure the modulation and bandpass to the fiber's characteristics.
Abstract:
Multi-carrier modulation fiber optic systems constructed using a series of electrical carriers, modulating the data on the electrical carriers and combining the carriers to form a wideband signal. The wideband signal can then be intensity modulated on a laser and coupled to a fiber optic channel. A receiver may then receive the laser signal from the fiber optic channel and convert it into an electrical signal. Multi-carrier modulation may be applied to existing fiber channels, which may be of lower quality. Existing fiber channels may have characteristics which prevent or restrict the transmission of data using intensity modulation at certain frequencies. An adaptive multi-carrier modulation transmitter may characterize an existing fiber optic channel and ascertain the overall characteristics of the channel. The transmitter and receiver can then be configured to use various bandwidths and various modulations in order to match the transfer characteristic of the fiber channel. A series of adaptive multi-carrier modulation transmitters and receivers can be integrated on a single integrated circuit. If multiple adaptive receivers and transmitters are integrated on a single integrated circuit, they may be used to upgrade existing networks by adding different wavelength lasers for the transmission of data in order to achieve any capacity desired. Each receiver and transmitter may characterize the fiber for its particular wavelength laser and may configure the modulation and bandpass to the fiber's characteristics.
Abstract:
A photonic arbitrary waveform modem utilizes a bipolar coding scheme. The bipolar coding scheme includes an arbitrary waveform modem which includes a plurality of tapped delay lines and is implemented by partitioning each optical frequency chip into positive and negative segments. Signals are decoded by effectively multiplying the transmit and receive code vectors and individually summing the positive and negative tap weights. The positive and negative tap weights are differenced to recreate the transmitted signal. The bipolar coding scheme allows for the use of truly orthogonal codes which decreases the interference and reduces the probability of detection.
Abstract:
TITLE OF THE INVENTION Optical Transmission System An optical transmission system which provides bandwidth restricted optical signal comprises an input terminal (10) for accepting an electrical binary signal, an amplifier (12) for amplifying said electrical binary signal to the level requested for operating an electrical-optical converter (16) such as a Mach Zehnder light modulator, a bandwidth restriction means (14) which is for instance a low pass filter for restricting bandwidth of said electrical binary signal, and an electrical-optical conversion means (16) such as a Mach Zehnder light modulator for converting electrical signal to optical signal. Because of the location of the low pass filter (14) between an output of the amplifier (12) and the Mach Zehnder light modulator (16), the amplifier (12) may operate in saturation region to provide high level output signal enough for operating the Mach Zehnder light modulator, and a signal shaped by the low pass filter (14) is applied to the Mach Zehnder light modulator (16) with excellent waveform. The invention is useful for long distance, large capacity and low cost optical transmission system.
Abstract:
A transmitting device for transmitting a broadband optical transmission signal via an optical waveguide, having an electronic subsystem and an optical subsystem, the optical subsystem has N electro-optic modulators for providing N optical signal components, where N is a number greater than 1, the electronic subsystem is configured to transform a baseband signal by a Fourier transform, or a discrete Fourier transform, into a frequency spectrum containing N digital coefficient signals, and to provide, on a basis of the N digital coefficient signals, N analog coefficient signals, and the electro-optic modulators of the optical subsystem are configured to be driven each by one of the N analog coefficient signals.
Abstract:
A system includes a transmitter configured to output an optical signal. The transmitter includes a seed laser, an optical array including a plurality of array elements, and a plurality of phase shifters in a multi-layer arrangement. The multi-layer arrangement includes a plurality of layers between the seed laser and the optical array, wherein a first layer of the plurality of layers transmits light to a second layer of the plurality of layers. The first layer has fewer phase shifters than the second layer. The multi-layer arrangement also includes a plurality of branches wherein each branch includes a phase shifter from each of the plurality of layers connected in series between the seed laser and one of the plurality of array elements. Each phase shifter is configured to shift the optical signal incrementally to amass a total phase shift for each of the plurality of array elements.
Abstract:
Methods, systems, and devices for wireless communication are described. One method includes identifying a plurality of intermediate precoders corresponding to a plurality of tone subsets. The plurality of intermediate precoders define a plurality of vectors across the plurality of tone subsets. The method further includes selecting, for each vector of the plurality of vectors, a subset of non-frequency domain components of the vector, such as time-domain components; modifying the plurality of intermediate precoders to a plurality of smoothed precoders based at least in part on the selected subset of non-frequency domain components for each vector; and precoding a plurality of transmit streams using the plurality of smoothed precoders. The plurality of smoothed precoders is smoothed in a frequency domain compared to the plurality of intermediate precoders. Smoothing precoders may enable application of wideband channel estimation techniques using user equipment (UE)-specific reference signals.
Abstract:
A high speed signal generator comprises a digital signal processing (DSP) block configured to process an input digital signal to generate in parallel a first digital sub-band signal having frequency components within a first spectral range and a second digital sub-band signal having frequency components within the first spectral range. A first Digital-to-Analog Converter (DAC) is configured to process the first digital sub-band signal to generate a first analog sub-band signal and a second DAC is configured to process the second digital sub-band signal to generate a second analog sub-band signal. A combiner is to combine the first analog sub-band signal and the second analog sub-band signal to generate an output analog signal having frequency components covering a substantially continuous spectral range from a lower frequency f1 to a higher frequency f2. The substantially continuous spectral range is substantially wider than a width of the first spectral range, and the lower frequency f1 is less than or equal to one-third of the higher frequency f2.
Abstract:
Provided are a method and an apparatus for generating and transmitting feedback signals for a plurality of reference signals having different directionality, in a wireless communication system. A terminal may receive the plurality of reference signals having different directionality, and transmit, to a transmission end, a feedback signal including a beam index which indicates one of the plurality of reference signals.
Abstract:
An optical multilevel transmitter includes a semiconductor quadrature optical modulator configured to separately modulate and output in-phase and quadrature electric field components and a semiconductor nonlinear characteristic compensation circuit configured to generate, from in-phase and quadrature drive signals to be inputted to the semiconductor quadrature optical modulator, two signals for correcting each other and to add the two correcting signals to the corresponding drive signals.