Abstract:
A circuit and method for testing a transceiver. The circuit includes a bit pattern generator connected to the transceiver such that the bit pattern generator can communicate a serial data stream to a receiver portion of the transceiver. The circuit also includes a bit pattern checker connected to the transceiver such that a transmitter portion of the transceiver can communicate a serial data stream to the bit pattern checker. The transceiver is configured such that the receiver portion of the transceiver is communicatingly looped back to the transmitter portion of the transceiver such that a data stream can be communicated from the receiver portion of the transceiver to the transmitter portion of the transceiver. Desirably, a loopback circuit in connected to the transceiver and includes fixed bit pattern means for communicating at least one fixed bit pattern to the transmitter portion of the transceiver. The loopback circuit is configured such that the FIFO component receives a set of bits from the receiver portion of the transceiver and at least one of the bits in the set is replaced by the fixed bit pattern before being communicated to the transmitter portion of the receiver.
Abstract:
A cross connect physical layer switching system is integrated into a central office and facilitates delivering data services, such as digital subscriber line (DSL) service, to subscribers over a shared data and voice line. The cross connect physical layer switching system may be placed between a splitter and the shared line to allow a remote test unit to be controllably connected to the shared line to permit testing of the shared line by a competitive local exchange carrier (CLEC). By placing the physical layer switching system in the CO, both the CLEC and the incumbent local exchange carrier (ILEC) have fill access to the test head (RTU) and full spectrum testing of the line. This allows test access to continue to be done remotely as in an unshared line environment.
Abstract:
A communication-line-quality measuring system includes transmission and terminal equipment. Transmission equipment has a first frame assembling part transmitting a down-link multiplexed frame signal to a down-link line having a first frequency, and a first frame disassembling part disassembling an up-link multiplexed frame signal transmitted through an up-link line having a second frequency. Terminal equipment has a second frame disassembling part disassembling the down-link multiplexed frame signal, and a second frame assembling part transmitting the up-link multiplexed frame signal obtained by frame-multiplexing an output signal of the subscriber unit with a control signal, to the up-link line. A pattern generation part in the first frame assembling part provides a test signal to an available channel of signal frames in the down-link multiplexed frame signal. A loop-back part between the second frame disassembling part and the frame assembling part loops back the test signal derived from the down-link multiplexed frame signal in the second frame disassembling part to the second frame assembling part. The second frame assembling part provides the test signal in the up-link multiplexed frame signal to transmit to the transmission equipment. A comparing part in the transmission equipment compares the test signal in the up-link multiplexed frame signal, which is looped back by a control of the loop-back part, with a reference signal the same as the test signal generated in the pattern generation part.
Abstract:
A wrap back test system and method for providing local fault detection within a section of an integrated I/O interface core device on an integrated circuit is disclosed. The system and method of this invention is suitable for use in any I/O interface having both a transmitter and a receiver section. The wrap back of input test data, prior to reformatting for transmission, to the receiver's data alignment stage permits fault detection within the core of an integrated I/O interface. By illustration, in a serializer/deserializer I/O, the wrap back of alignment pattern encoded parallel data, prior to serialization, to the receiver's data alignment stage permits identifying faults in just this portion of the I/O transceiver. The wrap back test system and method of this invention permits fault isolation of within the boundaries of the I/O core and independent of external logic or testers.
Abstract:
A loop back test system and method for providing local fault detection within the core or macrocell of an integrated I/O interface device on an integrated circuit is disclosed. The system and method of this invention is suitable for use in any I/O interface having both a transmitter and a receiver section. The loop back of input test data from the transmitters output directly to the receiver's input permits fault detection within the core of an integrated I/O interface. By illustration, in a serializer/deserializer I/O, the loop back of serialized, alignment pattern encoded parallel data from the output stage of the I/O transmitter to the receiver's input stage permits identifying faults occurring within the integrated I/O transceiver macrocell. The loop back test system and method of this invention permits fault isolation of within the boundaries of the I/O core and independent of external logic or testers.
Abstract:
A communication system testing method for testing a communication unit including a communication line and components of a communication unit such as a terminal unit. In addition, a control apparatus includes pause control means and control means, both of which are incorporated in an integrated communication control circuit. When the integrated communication control circuit is in the pause state, the pause control means outputs a pause permission indicating signal and detecting signal. The control means discontinues the supply of the main-clock signal by outputting the detecting signal, thereby limiting energy consumption.
Abstract:
In packet-based networks (10), it is often desired to test communications between two specific stations (11, 12). This can generally be effected from a first one of the stations (11) by requesting the other station (12) to `loop-back` a test packet sent from the first station. The first station (11), on receiving back the test packet, can thereby ascertain that not only is communication with the other station (12) possible, but it can also measure the round trip time. However, more complex characteristics of the transmission path between the stations (11, 12) are not ascertainable in this manner. The transmission of a predetermined sequence of packets permits such characteristics to be determined by observing the effect of the network (10) on the sequence considered as a whole. Thus by varying packet size in a sequence, characteristics such as bandwidth, propagation delay, queuing delay and the network's internal packet size can be derived. The use of bursts of packets enables buffer size and re-sequencing characteristics to be determined.
Abstract:
Loop-back detection and signalling is achieved on any DS-0 channel that conforms to 56 kbps operation such as DDS in a DS-1 digital data transmission system. A standard DS-1 chip set (line interface unit, framer, and link layer controller) is used, coupled to 24 transmit and receive buffer means in the customer main memory. The framer detects control bits by using Channel Associate Signalling, (designed for digitising voice in-band signalling and not normally used for data transmission), in the incoming signal and interrupts the customer CPU, which determines from the framer which channel caused the interrupt, changes the mode of the relevant channel, checks that channel's receive buffer means for loop-back codes, and, if enough successive loop-back codes are found, copies the receive buffer means into the transmit buffer means (with code mapping) for as long as the loop-back condition exists.
Abstract:
Partially formed products (2) are placed in molds (8) and a fluid such as air or an edible filler is injected into the partially formed products (2), e.g. by needles 17[see FIG. 6], so as to cause expansion and thereby produce final products (2) having the shape of the molds (8). Each mold (8) may comprise an upper mold part (14) and a lower mold part (11). The lower mold parts (11) may be mounted on a chain conveyor (9, 9b, 9c) [see FIG. 1] or a rotating cylinder (28) [see FIG. 12] so that the partially formed products (2) are moved towards and the final products (2) are moved away from a reciprocating assembly (12, 13) which carries the upper mold parts (14). Preferably, the final products (2) are retained in the upper mold parts (14) and then ejected by a blast of air. The invention enables complicated shapes to be formed at high production rates while using an economical amount of chocolate or the like.
Abstract:
A method for detecting a PN (Pseudo Noise) pattern for a remote loopback test in a communication system includes the following first through fifth steps. The first step receives a first n-bit pattern (n is an arbitrary number) which is a part of the PN pattern. The second step leftwardly shifts n bits of the first n-bit pattern by a first number of bits, so that a second n-bit pattern is generated. The third step executes an exclusive-OR operation on the n bits of the first n-bit pattern and n bits of the second n-bit pattern, so that a third n-bit pattern is generated. The fourth step rightwardly shifts n bits of the third n-bit pattern by a second number of bits, so that a fourth n-bit pattern is generated. The fifth step executes an exclusive-OR operation on the n bits of the third n-bit patterns and n bits of the fourth n-bit patterns, so that a fifth n-bit pattern is generated. The fifth n-bit pattern is a sixth n-bit pattern which is received after the first n-bit pattern. The first through fifth are repeatedly carried out each time n bits of the first n-bit pattern are received at the first step until a pattern detection signal is generated to activate the loopback test procedure when the fifth n-bit pattern and the sixth n-bit pattern become identical for a number of times.