Abstract:
This invention relates to organometallic compounds having the formula (L1)M(L2)y wherein M is a metal or metalloid, L1 is a substituted or unsubstituted anionic 6 electron donor ligand, L2 is the same or different and is (i) a substituted or unsubstituted anionic 2 electron donor ligand, (ii) a substituted or unsubstituted anionic 4 electron donor ligand, (iii) a substituted or unsubstituted neutral 2 electron donor ligand, or (iv) a substituted or unsubstituted anionic 4 electron donor ligand with a pendant neutral 2 electron donor moiety; and y is an integer of from 1 to 3; and wherein the sum of the oxidation number of M and the electric charges of L1 and L2 is equal to 0; a process for producing the organometallic compounds, and a method for producing a film or coating from the organometallic compounds. The organometallic compounds are useful in semiconductor applications as chemical vapor or atomic layer deposition precursors for film depositions.
Abstract:
A molecular assembly comprising a host metal complex with a space formed therein, and compounds having substituents enclosed in the metal complex within the space and molecular chains bonded to the substituents and extending to the exterior of the metal complex, wherein two or more substituents are enclosed in the same space of the metal complex.
Abstract:
Provided are an organic electroluminescence device which: can emit blue light having a short wavelength and a high color purity; and can be combined with any other light emitting compound to emit white light and a metal complex compound for realizing the device, and a material for an organic electroluminescence device. The metal complex is of a specific structure having a tridentate chelate ligand and an electron withdrawing group. The material for an organic electroluminescence device is formed of the metal complex compound. The organic electroluminescence device has an organic thin film layer formed of one or more layers including at least a light emitting layer, the organic thin film layer being interposed between a pair of electrodes. In the organic electroluminescence device, at least one layer of the organic thin film layer contains the metal complex compound, and emits light by applying a voltage between both the electrodes.
Abstract:
To provide a catalyst for synthesis reaction which can achieve good yield in the Sonogashira reaction and also can be recovered after the reaction, and a method for synthesizing a compound in which the catalyst for synthesis reaction is used, a perovskite-type composite oxide containing palladium is used as the catalyst for synthesis reaction in the Sonogashira reaction represented by the following reaction scheme (1): R1—X+HC≡CR2→R1C≡CR2 (1)
Abstract:
A process for producing a ring-substituted arene borane which comprises reacting a ring-substituted arene with an HB organic compound in the presence of a catalytically effective amount of an iridium or rhodium complex with three or more substituents, excluding hydrogen, bonded to the iridium or rhodium and a phosphorus organic ligand, which is at least in part bonded to the iridium or rhodium, to form the ring-substituted arene borane. Also provided are catalytic compounds for catalyzing the process comprising an iridium or rhodium complex with three or substituents, excluding hydrogen, bonded to the iridium or rhodium and optionally, a phosphorus organic ligand, which is at least in part bonded to the iridium or rhodium.
Abstract:
The invention relates to compounds having a structural element of formula (I) in an aromatic hydrocarbon ring, wherein: M represents —Li, —MgX3, (C1-C18-Alkyl)3Sn—, —ZnX3 or —B(O—C1C4-Alkyl)2; X1 and X2, independent of one another, represent O or N, and C-bound hydrocarbon radicals or heterohydrocarbon radicals are bound to the free bonds of the O and N atoms; group —C═C—, together with C atoms, forms a hydrocarbon aromatic compound and represents X3 Cl, Br or I. The inventive compounds are easily obtained by directly substituting the hydrogen in the ortho position to the P atom with metalation reagents. The metal atoms can then be substituted by a reactive electrophilic compound. The group —P(X1—)(X2—) - - - (BH3)0,1 can then be converted into a secondary phosphine group. The inventive method enables the production of monophosphines and diphosphines even on a large scale, which are valuable ligands for metal complexes serving as catalysts for, e.g. enantioselective hydrogenations.
Abstract:
The invention relates to compounds of formula (I) provided in the form of racemic compounds, mixtures of diastereomers or essentially pure diastereomers, wherein R1 represents a hydrogen atom or C1-C4-alkyl, and at least one secondary phosphine depicts an unsubstituted or substituted cyclic phosphine group, or phosphonium salts thereof having one or two monovalent anions or a divalent anion. The compounds of formula (I) can be obtained by means of a novel method and are valuable ligands for catalytically active metal complexes in asymmetrical synthesis.
Abstract:
The invention comprises a chemical composition with the structure shown below. The composition can be polymerized or pyrolyzed, forming transition metal nanoparticles homogeneously dispersed in a thermoset or carbon composition. The size of the nanoparticles can be controlled by manipulating the number and arrangement of functional groups in the composition and by changing the conditions of the polymerization or pyrolysis. The resulting thermosets and carbon compositions have useful magnetic, electric, mechanical, catalytic and/or optical properties. wherein A is selected from the group consisting of H, wherein M is a metal selected independently from the group consisting of Fe, Mn, Ru, Co, Ni, Cr and V; wherein Rx is independently selected from the group consisting of an aromatic, a substituted aromatic group and combinations thereof; wherein Ry is independently selected from the group consisting of an aromatic, a substituted aromatic group and combinations thereof; wherein m is ≧0; wherein s is ≧0; wherein z is ≧0; and wherein m and s are independently determined in each repeating unit.
Abstract:
An optical recording medium is disclosed, which is composed of a substrate, a recording layer comprising an organic dye upon which information can be recorded by a laser beam, a reflective layer and a protective layer formed in such order; whereas the aforementioned organic dye is a substituted phthalocyanine compound chemically bonded to substituted or un-substituted ferrocene via an anhydride group and a bridge unit G, wherein said G is selected from —O—, —S—, —S—(CH2)1-6—, —(NH)—, —N(alkyl)—, —(CH2)—, —CH(alkyl)—, —C(alkyl)2—, —(CH2—O)—, —C(═O)—, —C—O—C(═O)—, —O—C(═O)—, and —C(═O)—O—.