Abstract:
A device for generating an x-ray point source includes a target, and an electron source for producing electrons which intersect with the target to generate an x-ray point source having a size which is confined by a dimension of the target.
Abstract:
A photon beam dose enhancement is controlled by configuring at least two magnets in a staggered opposing coil configuration, such that the first central field vector of the first magnet is more anti-parallel than parallel to the second central field vector of the second magnet. In one form, the first central field vector of the first magnet is rotated between ±90° to 180° to the second central field vector of the second magnet. Typically, the first central field vector is noncoaxial with the second central field vector. The resulting magnetic field configuration has a larger portion of higher magnitude magnetic field that can reach deeper into a target body and provides additional space within the region of higher magnitude that can accommodate larger portions of a body.
Abstract:
An x-ray source that can produce high-brilliance x-rays at a low cost and from a small footprint includes a radiofrequency (RF) photoinjector, an accelerator module (such as a linear superconducting accelerator moducle), a high-power optical laser apparatus, and a passive enhancement cavity. A stream of photons generated by the laser apparatus is accumulated in the enhancement cavity, and an electron stream from the photoinjector are then directed through the enhancement cavity to collide with the photons and generate high-brilliance x-rays via inverse-Compton scattering.
Abstract:
An x-ray tube cathode assembly (28) includes a support arm (36) comprising a first metal. A ceramic insulator (70, 82) has a first metalized surface (72, 86) wherein the metalized surfaces comprise a desired amount of the first metal. A first member of filler material (90) is in contact with the support arm (36) and the first metalized surface (72, 86) of the ceramic insulator (70, 82), the first member of filler material comprising at least a second metal (96a, 96b) wherein a first alloy system (FIG. 5) comprising the first and second metals includes an alloy minimum point percentage composition (P) of the first and second metals having a first alloy system minimum melting point (M) for the alloy minimum point percentage composition that is lower than both of the melting point of the first metal and second metal. A bonding region resulting from heating the cathode assembly causing diffusion bonding to proceed, the bonding region has a layer of alloy comprising the minimum point percentage composition (P) and the heating of the cathode assembly continues to a bonding temperature of at least the first alloy system minimum melting point (M) and holding at that temperature for a desired period of time.
Abstract:
An apparatus delivers x-rays to at least a portion of an interior surface of a body cavity. The apparatus includes a flexible catheter, at least one balloon or inflatable element affixed to the catheter, one or more flexible probe assemblies, an x-ray generator assembly coupled to the distal end of each probe assembly, and a power supply means. The flexible catheter includes one or more interior channels, and each flexible probe assembly is slidably positionable within a respective interior channel of the catheter. Each balloon, when inflated, defines a predetermined surface contour disposed about an interior region of a body cavity. Each flexible probe includes a transmission path for transmitting activating energy, and may be an optical fiber for transmitting optical energy. The x-ray generator assembly includes an electron source and a target element. The electron source emits electrons in response to activating optical energy transmitted through the transmission path. The target element generates electrons in accordance with a desired radiation profile, in response to electrons impinging thereon.
Abstract:
An apparatus for applying x-rays to an interior surface of a body cavity includes a catheter assembly, and one or more flexible probe assemblies. An x-ray generator assembly, including an optically activated x-ray source, is coupled to a distal end of each flexible probe assembly. The catheter assembly includes a body member defining one or more interior channels; an x-ray absorption control layer surrounding the body member; at least one inner tube enclosing the body member and the absorption control layer; at least one outer tube; and one or more inflatable elements coupled to the inner tube. The inflatable elements, when inflated, fixedly position the catheter assembly within the body cavity. Each flexible probe assembly is slidably positionable within at least one of the interior channels, and includes a transmission path adapted to transmit an activating energy, such as light from laser, onto a cathode within the x-ray source.
Abstract:
An electron emitter assembly and a method for adjusting a size of electron beams are provided. The electron emitter assembly includes a laser configured to emit a first light beam. The electron emitter assembly further includes a lens assembly configured to receive the first light beam. The lens assembly is configured to adjust a size of the first light beam between a first predetermined size and a second predetermined size larger than the first predetermined size. The lens assembly emits the first light beam toward a photo-cathode. The photo-cathode is configured to emit a first electron beam having a third predetermined size when the first light beam having the first predetermined size contacts the photo-cathode. The photo-cathode is further configured to emit a second electron beam having a fourth predetermined size when the first light beam having the second predetermined size contacts the photo-cathode. The electron emitter assembly further includes an anode configured to receive the first and second electrons beams from the photo-cathode.
Abstract:
Portable x-ray devices and methods for using such devices are described. The devices have an x-ray tube powered by an integrated power system. The x-ray tube is shielded with a low-density insulating material containing a high-Z substance. The devices can also have an integrated display component. With these components, the size and weight of the x-ray devices can be reduced and the portability of the devices enhanced. The x-ray devices also have an x-ray detecting means that is not structurally attached to the device and therefore is free standing. Consequently, the x-ray devices can also be used as a digital x-ray camera. The portable x-ray devices are especially useful for applications where portability is an important feature such as in field work, remote operations, and mobile operations such as nursing homes, home healthcare, or teaching classrooms. This portability feature can be particularly useful in multi-suite medical and dental offices where a single x-ray device can be used as a digital x-ray camera in multiple offices instead of requiring a separate device in every office.
Abstract:
Methods for connecting electrical potential to an extractor cup at the cathode of a miniature x-ray tube are disclosed. The various connection schemes are designed to form a rugged and conveniently manufacturable connection between the metal extractor cup and one side of the cathode filament, so that the extractor cup shapes the path of electrons as desired en route to the anode of the tube. Some of the disclosed connections involve evaporation of conductive metal or other materials off the filament when the filament is first activated. Others involve applying a paste or paint conductive precursor directly to a base to connect a post and the extractor, the paste being heat-cured after the completion of assembly. Others involve a fine wire or spring strip from one filament post to the walls of the extractor cup. Other schemes include welded or brazed wires or foil, crimping, pinching, swaging and other connections, all made inside the tube enclosure.
Abstract:
A system and method for forming x-rays. One exemplary system includes a target and electron emission subsystem with a plurality of electron sources. Each of the plurality of electron sources is configured to generate a plurality of discrete spots on the target from which x-rays are emitted. Another exemplary system includes a target, an electron emission subsystem with a plurality of electron sources, each of which generates at least one of the plurality of spots on the target, and a transient beam protection subsystem for protecting the electron emission subsystem from transient beam currents and material emissions from the target.