Abstract:
A valve mechanism for controlling release of pressurized fluid includes a fluid chamber. A plunger is received in an aperture in the fluid chamber, and is movable between a fluid retention position in which fluid is substantially trapped in the fluid chamber and a fluid release position in which fluid can escape from the fluid chamber through passages in the plunger. The plunger is biased into the fluid retention position. A driver drives a plunger actuator, and the plunger actuator is guided into engagement with the plunger to cause the plunger and the plunger actuator to move in unison and move the plunger into the fluid release position during a first portion of a stroke of the driver towards the fluid chamber, and the plunger actuator is further guided to permit the plunger to return to the fluid retention position during a second portion of the stroke.
Abstract:
The invention relates to a valve control device, the device including a hydropneumatic mechanism for amplifying the force resulting from the presence of a pressurised fluid in a control chamber consisting of a piston (4) housed in the body (2, 3) of the device. The piston (4) is rigidly connected to a piston (5) with a smaller cross-section and tightly engaging with a control member (6). The downward movement of the piston with the smaller cross-section (5) engages with a hydraulic chamber so as to increase the pressure inside said chamber and to move the control member (6) in the opposite direction. A connection port (19) for supplying the pressurised fluid is provided on a rotatably mobile element (13) on top of the device. Said port (19) is off-centre relative to the longitudinal axis, so as to be aligned with an opening (17) for supplying the control chamber. A seal is provided between the two surfaces comprising the port (19) and the opening (17) so as to seal the fluid stream when both elements are aligned. The mobile element (13) is rotatably attached to the ring (12) for activating the mechanical locking means (10) of the control member (6). In this way, a single operation of the ring (12) makes it possible to deactivate the mechanical locking means and to supply the control chamber with pressurised fluid.
Abstract:
A valve body (1) which may be applied to a pressure vessel (B), in particular a vessel (B) adapted to contain a liquefied gas, comprises: a first duct (7) which may be used to fill and empty the vessel (B), a second duct (27) connecting the vessel (B) to a safety valve device (15) provided on the valve body (1), a third duct (37) connecting the vessel (B) to a level indicator (28) provided on the valve body (1).
Abstract:
A valve for installation in a valve bore of a housing or valve block includes a valve bushing for insertion into the valve bore, a guided valve piston that can be moved axially in the valve bushing, an activation section of said piston projecting above the valve bushing axially, and a valve cover that is configured to be arranged over the valve bore and that forms, together with the activation section of the valve piston, at least one activation pressure chamber.
Abstract:
The invention relates to a fuel injector for injecting fuel into a combustion chamber, having a solenoid valve for controlling a mini-servo valve. A movable armature can be placed in a sealing fashion on a valve seat in a lower armature chamber, wherein in addition, the mini-servo valve is held in an injector body and seals a control line against a flat seat. By means of the flat seat, during an actuation of the solenoid valve, the control line can be relieved of pressure from a high fuel pressure to a return pressure into at least one return line. A mechanism for reducing pressure oscillations are provided in the at least one return line, which includes at least one diaphragm cell which is held in a recess and which is placed in fluidic connection with the at least one return bore. A fuel injector with the mechanism for reducing pressure oscillations is therefore created in the at least one return line which operates without a leakage flow and has a simple and effective function.
Abstract:
An intake valve for a cylinder of the high-pressure fuel pump of a common rail injection system has a valve body with an inlet opening and a closing member. The closing member closes the inlet opening in a first end position. The member can be moved relative to the inlet opening depending on a pressure difference. The intake valve has a non-linear volumetric flow characteristic.
Abstract:
A shut-off valve for use in a reverse osmosis filtering system including a housing defining an interior in fluid communication with a water inlet, a water outlet, and a permeate inlet, the housing having a fluidic network with a flowpath that connects the water inlet and the water outlet, a diaphragm plate forming a portion of the fluidic network within the interior, a piston within the interior for selectively opening and closing the flowpath, and at least one diaphragm coupling to the piston and the diaphragm plate such that as permeate pressure changes occur at the permeate outlet, the piston rocks between opening and closing the flowpath based on deflection of the at least one diaphragm in response to the permeate pressure changes.
Abstract:
Adjustable damping valve for a vibration damper having a valve body having a pressure-loaded surface that acts in the lifting direction of the valve body and is impinged by an incident flow of damping medium from an opening inside a cross section limited by valve seat surface, and a surface operative in the closing direction is formed by a rear side of the valve body. A resulting force including a force of at least one valve spring and an actuating force of an actuator acts on the valve body. An additional surface of the valve body is pressure-loaded by damping medium by incident flow on the valve body in the closing direction of the valve body, or the valve body has a first pressure-loaded surface acting in the lifting direction, and a second pressure-loaded surface that acts in the lifting direction.
Abstract:
A hydraulic actuating device for a sliding stem control valve assembly is mounted between a control valve and an actuator housing. The hydraulic actuating device is connected to one of a control valve stem, an actuator stem, and a stem connector and the hydraulic actuating device moves either the control valve stem, the actuator stem, or the stem connector in response to varying hydraulic pressure within the hydraulic actuating device. The hydraulic actuating device may be used to override an actuator of the sliding stem valve during emergency operations, or to provide a backup actuator in the case of a primary actuator malfunction.
Abstract:
Self-contained disposable cryosurgical devices dispense a cryogenic fluid, such as a stream of liquid nitrous oxide, carbon dioxide or argon. The cryosurgical devices include a container, including a reservoir containing a cryogenic fluid, a flow passage configured to receive the cryogenic fluid from the reservoir, a valve assembly configured in an ergonomic housing, and a dispensing head. The device further includes at least one filter disposed in the flow passage configured to facilitate the flow of the cryogenic fluid. The valve assembly includes a valve body and valve slide that is actuated to effect the flow of the cryogenic fluid through the flow passage to patient target. The housing includes an activation lever with an eccentric hub that primes the device for use when a container is loaded into the housing and the activation lever is closed.