Abstract:
This invention provides a novel dry chemical process for removing by carbonylation the metals harmful to the catalyst activity from the catalyst for the residuum and/or heavy oil catalytic cracking, comprising: contacting the catalyst contaminated by the poisonous metals with an activation gas and a reduction gas in a reactor for activation and reduction; and then in a carbonylation reactor, contacting the catalyst treated by activating and reducing with CO gas to make the metals on the catalyst carbonylated to form gaseous metal carbonyls which are then transferred and separated from the solid catalyst, thereby the catalyst activity is restored. The process of this invention is simple in the technology, moderate in the operation conditions, and it will not cause secondary pollution to environment for there is no addition and discharge of any liquid.
Abstract:
The invention features an apparatus providing electromagnetic radiation including: a first non-linear optical crystal for converting input radiation from a laser into intermediate radiation; a second non-linear optical crystal for converting the intermediate radiation into output radiation; and a plurality of optics forming an optical cavity that encloses the first and second non-linear optical crystals, substantially confines and resonates the intermediate radiation, and has a cavity length matching the cavity length of the laser to within less than the coherence length of the input radiation. The apparatus can be used to convert the output from a multimode, diode-pumped, solid-state laser into high power ultraviolet radiation.
Abstract:
The present invention discloses a method for rapid antimicrobial susceptibility testing to screen antibiotics in a few hours instead of days by conventional methods. This method can also be used to identify susceptible antibiotics to treat mycobacterial infection in a few days instead of the usual six to eight weeks. Fast screening of antibiotics is achieved by a short period of specimen incubation in different antibiotics embedded media to create differential bacterial counts. The differences of bacterial counts among antibiotics embedded media are subsequently amplified by DNA amplification methods for detection. Following DNA amplification, rapid quantitation and minimum inhibition concentration (MIC) determinations for a panel of antibiotics are achieved in less than one minute by fluorescence quantitation methods.
Abstract:
A new type x-ray image intensifier has a specially developed x-ray sensit photocathode which has a low/high density alkali halogenide structure and therefore has high conversion efficiency of converting x-ray directly into photoelectrons or a field-assisted x-ray photocathode which has an extracting field and therefore is able to provide a high conversion efficiency of x-ray to photoelectron and high spatial resolution, even high time resolution. The new type x-ray image intensifier consists of the x-ray photocathode, a MCP and a phosphor screen, forming a proximity focus type photoelectric imaging device.A new portable x-ray diagnosis unit has the new type x-ray image intensifier and a new type compact x-ray source that has a very small volume, 30-90 kv acceleration voltage and a cone protective cover at the outlet of x-ray.
Abstract:
Immunogenic compositions comprising hemagglutinin (HA) variants and/or neuraminidasc (NA) variants, which may be contained in an influenza A virus, and uses thereof for eliciting immune responses against influenza A virus.
Abstract:
An isolated nucleic acid encoding a C-terminal fragment of paraspeckle component 1 (PSPC1) is disclosed. The C-terminal fragment of the PSPC1 comprises an extension of more than 10 but no greater than 131 amino acid residues with its C-terminal amino acid identical to the C-terminus of the PSPC1 sequence SEQ ID NO: 3 and exhibits a biological activity against tumor cells. The tumor cells are associated with either PSPC1 or protein tyrosine kinase 6 (PTK6), or both. The anti-tumor activity is at least one selected from the group consisting of: (a) suppressing tumor cell growth; (b) suppressing tumor cell progression; (c) suppressing tumor cell metastasis; (d) decreasing PSPC1 expression; and (e) decreasing oncogenic PTK6 expression in cytoplasm. Also disclosed is a peptide comprising a C-terminal fragment sequence of PSPC1. A reagent kit and method for predicting tumor progression, metastasis, and prognosis in a cancer patient are also disclosed.
Abstract:
Assembly of a synthetic polymer network inside cells is described that renders the cells incapable of dividing. The resulting cells can retain functions, including for example, cellular metabolism, motility, protein synthesis, and compatibility with genetic circuits. The cells can also acquire new abilities to resist stressors that otherwise kill natural cells.
Abstract:
A system and method for image-guided microscopic illumination are provided. A processing module controls an imaging assembly such that a camera acquires an image or images of a sample in multiple fields of view, and the image or images are automatically transmitted to a processing module and processed by the first processing module automatically in real-time based on a predefined criterion so as to determine coordinate information of an interested region in each field of view. The processing module also controls an illuminating assembly to illuminate the interested region of the sample according to the received coordinate information regarding to the interested region, with the illumination patterns changing among the fields of view.
Abstract:
The present invention pertains to methods of coating antimicrobial peptides on the biomaterial and the biomaterial coated thereby. The coating solution described herein comprises one or more antimicrobial peptides (AMPs) dissolved in a buffer containing an anionic surfactant, wherein the AMPs are amphipathic and cationic.
Abstract:
Provided herein is a method for treating neurodegenerative diseases, such as Alzheimer's disease (AD), by use of monoclonal antibody, which exhibits a binding affinity to Siglec-3 receptor. According to some embodiments of the present disclosure, the monoclonal antibody is capable of enhancing phagocytosis of neurotoxic peptides by immune cells thereby providing a neuroprotective effect to a subject in need thereof.