Abstract:
A distance image sensor capable of enlarging the distance measurement range without reducing the distance resolution is provided. A radiation source 13 provides first to fifth pulse trains PT1 to PT5 which are irradiated to the object as radiation pulses in the first to fifth frames arranged in order on a time axis. In each of the frames, imaging times TPU1 to TPU5 are prescribed at points of predetermined time ΔTPD from the start point of each frame, also the pulses PT1 to PT5 are shifted respectively by shift amounts different from each other from the start point of the first to fifth frames. A pixel array 23 generates element image signals SE1 to SE5 each of which has distance information of an object in distance ranges different from each other using imaging windows A and B in each of five frames. A processing unit 17 generates an image signal SIMAGE by combining the element image signals. Since five times-of-flight measurement are used, the width of the radiation pulse does not have to be increased to obtain distance information of the object in a wide distance range, and the distance resolution is not reduced.
Abstract:
Provided is a method of increasing a yield of a staple food crop which comprises bringing a compound represented by the following Formula (I) into contact with a plant body, excluding seeds, of a staple food crop to be cultured. The staple food crop is preferably a cereal crop, a tuber crop or the like. In the following Formula (I), R1 and R2 each independently represent a hydrogen atom or a monovalent substituent, or R1 and R2 are bound together to form an azo group; and R3 represents a hydrogen atom or a monovalent substituent.
Abstract translation:本发明提供一种提高主食作物的产量的方法,其包括使下述式(I)所示的化合物与待培养的主食作物的植物(不包括种子)接触。 主食最好是谷类作物,块茎作物等。 在下式(I)中,R 1和R 2各自独立地表示氢原子或一价取代基,或者R 1和R 2结合在一起形成偶氮基; R 3表示氢原子或一价取代基。
Abstract:
An autism diagnosis support apparatus 1 according to the present invention is an autism diagnosis support apparatus that detects a symptom of autism based on a state of a subject looking at a target, including: an eye-gaze point detection unit 2 that detects a line-of-sight direction of the subject looking at the target; a color camera 3 that takes an image of the target; a pupil position detection unit 4 that measures a pupil coordinate of the target; and a data analysis unit 7 that calculates a relationship between the line-of-sight direction of the subject and a pupil position of the target using the line-of-sight direction and the pupil coordinate and outputs the relationship along with the image of the target.
Abstract:
A method for producing colored polymer particles, including adding a colorant-containing composition containing a radically polymerizable monomer and a colorant in a supercritical fluid or a subcritical fluid and polymerizing the radically polymerizable monomer, so as to produce colored polymer particles which are insoluble in the supercritical fluid or subcritical fluid, wherein the supercritical fluid or subcritical fluid is a supercritical fluid or subcritical fluid in which at least the radically polymerizable monomer is soluble, but polymer particles resulted from polymerization of the radically polymerizable monomer are insoluble, and wherein the colorant is at least one selected from the group consisting of a pigment, a dye and a polymer dye.
Abstract:
An on-board multibeam radar apparatus includes a plurality of beam elements that constitute an antenna transmitting a transmission wave and receiving an incoming wave being reflected and arriving from a target in response to the transmission wave, a control unit configured to select a beam element used for transmission and reception out of the plurality of beam elements so as to change a field of view, and a processing unit configured to apply a Fourier transformation to beam element data which are data of a received wave received through the beam element used for transmission and reception selected by the control unit based on the number of elements and the element interval of a desired virtual array antenna so as to create virtual array data, and to perform a predetermined process based on the created virtual array data.
Abstract:
An n-type region as a charge storage region of a photodiode is buried in a substrate. The interface between silicon and a silicon oxide film is covered with a high concentration p-layer and a lower concentration p-layer is formed only in the portion immediately below a floating electrode for signal extraction. Electrons generated by light are stored in the charge storage region, thereby changing the potential of the portion of the p-layer at the surface of the semiconductor region. The change is transmitted through a thin insulating film to the floating electrode by capacitive coupling and read out by a buffer transistor. Initialization of charges is executed by adding a positive high voltage to the gate electrode of a first transfer transistor such that the electrons stored in the charge storage region are transferred to the n+ region and generation of reset noise is protected.
Abstract:
The invention provides a solvent for an electrolyte solution, an electrolyte solution, and a gel-like electrolyte superior in oxidation resistance and flame resistance. A solvent for an electrolyte solution comprising at least one boric ester represented by the following formula (I), and a boric ester represented by the following formula (II): B(ORf)3 (I); B(OCH2CH2CN)3 (II) wherein, in formula (I), each Rf independently represents CH2(CF2)nCF3 or CH(CF3)2, n is an integer from 0 to 6, and at least a part of each of —ORf and —OCH2CH2CN included in the boric esters is transesterified.
Abstract:
Since cerebral atrophy does not occur only in a specific cross-section and reaches the brain in its entirety or arises prominently in a specific lobe (for example temporal lobe), for the assessment of cerebral atrophy, not only atrophy assessment for the frontal lobe but also an assessment also including atrophy of the temporal lobe, the parietal lobe and the occipital lobe is more desirable. The intracranial volume, the volume of the grey matter and the volume of the white matter are respectively extracted, computed and converted into numbers by image processing from a plurality of MRI slice images and the like. Ratios of these values from the conversions into numbers are taken to calculate the ratio of the grey matter and the ratio of the white matter with respect to the entire brain. Through comparison of a multitude of measurement data obtained by this automated computation, and a case, an objective cerebral atrophy assessment is carried out.
Abstract:
An electronic device includes: a PHLCT circuit (15), which includes an input signal DCT coefficient computation module configured to compute DCT coefficients of an input signal of a subject block region in a plurality of block regions and block regions adjacent to the subject block region, respectively, an offset function DCT coefficient computation module configured to compute DCT coefficients of a gradient offset function, which offsets the gradient of the input signal at a block boundary between each subject block region and its adjacent block regions from the DCT coefficients of the input signal, and a residual computation module configured to compute a residual of the DCT coefficients of the input signal and the DCT coefficients of the gradient offset function; a quantization circuit configured to quantize the residual to obtain compressed data; and an entropy coding circuit (17) configured to encode the compressed data.
Abstract:
There is disclosed an image display displaying a multicolor image by using image data expressing color components of a first color specification system. The image display is provided with a display unit displaying an image by a second color specification system which is different from the first color specification system, and displaying each of colors included in the second color specification system per pixel in correspondence to input device data, a basic color computing unit (46) determining basic data expressing each of the color components in the second color specification system by using the input image data of the first color specification system, a specific color computing unit (48) determining specific data expressing each of color components in a third color specification system by using the input image data of the first color specification system, a combining unit (54, 56, 58) combining each of reference data of the base color computing unit and each of specific data of the specific color computing unit so as to determine combined data of each of the colors, and an output data computing unit (60) determining device data of each of the colors of the display unit on the basis of the combined data.