Abstract:
Technologies for individualized building automation include a building automation application server, a building controller, and several mobile computing devices. Each mobile computing device generates individualized sensor data based on the time and location of the mobile computing device and sensor data indicative of a building system control parameter. The sensor data may include temperature data, humidity data, or other environmental data, and may be received by the mobile computing device from one or more external sensors. The building automation application server receives the individualized sensor data from the mobile computing devices and generates a building system configuration based on the individualized sensor data. The building automation application server may optimize the building system configuration for cost, efficiency, or user comfort based on the individualized sensor data. The mobile computing devices and the building automation application server may communicate via one or more collection servers. Other embodiments are described and claimed.
Abstract:
A method for determining an undesired condition in an electrical drive system including an electrical machine and an electrical drive, wherein the method includes a) obtaining a measured signal of an electrical or mechanical parameter, b) obtaining a frequency spectrum of the measured signal, that contains a measured frequency component, c) determining whether the measured frequency component is within a predetermined distance from a trend line, which trend line is associated with only one specific frequency component of the electrical or mechanical parameter present during a specific undesired condition, d) on the condition that the measured frequency component is within the predetermined distance from the trend line increasing a counter associated with the trend line, e) repeating steps a) to d), wherein in case the counter reaches a predetermined number determining that the electrical drive system is subjected to the undesired condition associated with the trend line.
Abstract:
A tool for extracting armour wires from a cable having an armouring layer includes a curved beak for grasping an armour wire, and an elongated body having a bottom surface provided with a protruding tip for separating two neighboring armour wires. The tip is protrudes away from the bottom surface and is elongated in a direction parallel to the bottom surface.
Abstract:
A transmission cable includes a conductor or a bundle of conductors extending along a longitudinal axis, which is circumferentially covered by an insulation layer having an extruded insulation material, whereby the transmission cable passes the electrical type test as specified in Cigré TB496, whereby the rated voltage U0 is 450 kV or more. The type test includes subjecting the power cable to a DC voltage of 1.85*U0 during 10 to 15 cycles at negative polarity, followed by a polarity reversal with another 10 to 15 cycles at positive polarity at a DC voltage of 1.85*U0, followed by additional 2 to 5 cycles during at least 4 to 10 days at positive polarity, and wherein U0 is 450 kV, or 525 kV, or more.
Abstract:
A distributed method is provided for controlling electrical power in a microgrid, wherein a plurality of distributed generators supply electrical power to the microgrid, and each of the distributed generators is connected to a controller for controlling the real and reactive output power from the distributed generator. The method includes the steps of measuring, for each of the distributed generators, a voltage level at a measuring point associated with that distributed generator and forwarding the measured voltage level to the controller connected to that distributed generator; determining, for each of the controllers, a parameter value related to the received measured voltage level and/or related to a reactive current injection capacity of the distributed generator connected to that controller; communicating, from each of the controllers, its determined parameter value to each other ones of the controllers; determining a sequential order in which the controllers are to control the distributed generators to inject reactive power into the microgrid based on the communicated parameter values; and controlling the distributed generators to inject reactive power into the microgrid by means of the controllers in the determined sequential order.
Abstract:
A high voltage valve arrangement includes a high voltage valve unit; an external electric shield structure arranged at least partially around the high voltage modular valve unit and a grounding system. The grounding system includes a grounding system configured to be remotely extended from a retracted position to an extended position, whereby the extendable grounding device establishes electric connection with the external shield structure when it is extended from the retracted position.
Abstract:
A multi-layered dielectric polymer material, a capacitor comprising the multi-layered dielectric polymer material, a use of the multi-layered dielectric polymer material and a method for forming the multi-layered dielectric polymer material are disclosed. The multi-layered dielectric polymer material may comprise a plurality of dielectric layers wherein the plurality of dielectric layers may comprise an identical base material. The base material may be compound with agents for at least one of the plurality of dielectric layers. It may overcome compatible issues for convention multi-layered material. The dielectric polymer material may have increased dielectric strength and excellent thermal properties.
Abstract:
A switch assembly including a vacuum switch mounted to an at least partly electrically conductive housing, and a holder for a vacuum bottle. The housing includes at least one gas entry opening at a lower end of the housing and at least one gas exit opening at an upper end of the housing, and a first free heat convection path between the openings to provide cooling. A second free heat convection path may be provided in a free space between the holder and vacuum bottle. A switching device for connecting the vacuum switch to a second electric conductor. An electric power distribution switchgear, encapsulating at least one three-phase module including a switching device.
Abstract:
The embodiment of the present disclosure provides a cutout which can comprise a top contact assembly being capable of electrically coupled with a first electric cable; a bottom contact assembly being capable of electrically coupled with a second electric cable; an insulator assembly secured to the top contact assembly in a first end thereof, and secured to the bottom assembly in a second end thereof opposite to the first end; and a tube assembly having a fuselink placed therein for conducting electricity between the top contact assembly and a bottom contact assembly. The bottom contact assembly has a bottom contact member which is capable of electrically coupled with the second electrical cable at one end thereof, and removeably coupled with the tube assembly at the other end thereof, such that a current path is formed from the second electrical cable to the tube assembly via the bottom contact member.