摘要:
A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
摘要:
A metallic article adapted to be exposed to a gas during operation conditions is provided. The metallic article includes a metallic substrate, and a thermal barrier coating on the metallic substrate for restricting heat transfer from the gas to the metallic substrate. The thermal barrier coating includes a coating of a ceramic material formed by a deposition of powdered particles of said ceramic material defining a porous microstructure, wherein the porous microstructure has an average pore size ‘d’, such that d ≤ 0.001 · T p , where d is the average pore size in μm, T is an absolute temperature of the gas, and P is a pressure of gas in atmospheres
摘要:
In a telemetry system for use in an engine, a circuit structure (34) affixed to a moving part (20) of the engine is disposed for amplifying information sensed about a condition of the part and transmitting the sensed information to a receiver external to the engine. The circuit structure is adapted for the high temperature environment of the engine and includes a differential amplifier (102, 111) having an input for receiving a signal from a sensor (101, 110) disposed on the part. A voltage controlled oscillator (104, 115) with an input coupled to the output of the amplifier produces an oscillatory signal having a frequency representative of the sensed condition. A buffer (105, 116) with an input coupled to the output of the oscillator buffers the oscillatory signal, which is then coupled to an antenna (26) for transmitting the information to the receiver.
摘要:
A bracket assembly is used to mount a wireless telemetry component proximate a rotating component of a combustion turbine engine (10), wherein the wireless telemetry component includes an RF transparent ceramic cover (128). The bracket assembly comprises a first mounting bracket (125) on a surface proximate the rotating component that includes a first (138) and second (139) bracket member spaced apart from one another. The first (138) and second (139) bracket members are disposed generally perpendicular to a direction of centrifugal forces generated by the rotating component. At least one of the first (138) or second bracket (139) members is inclined toward the other bracket member and disposed at an acute angle relative to the surface (141) proximate the rotating component.
摘要:
A nickel-based coating or alloy is provided. The coating includes tantalum preferably without rhenium. The coating or alloy has stabilized the formation of phases γ/γ′ at high temperatures leading to a reduction of local stresses. A component is also provided. The substrate of the component includes a nickel-based or cobalt-based superalloy.
摘要:
A circuit affixed to a moving part of an engine for sensing and processing the temperature of the part. The circuit generates a signal representative of the temperature sensed by a thermocouple (110) and amplified by an amplifier (112). A square wave oscillator (113) with a temperature sensitive capacitor (C8) varies its frequency in response to changes of a local temperature of the circuit. A chopper (114, J27) converts the output of the amplifier into an alternating current signal. The chopper is gated by the square wave oscillator and a second input is coupled to an output of the amplifier. Thus, the chopper has an output signal having a frequency representative of the local temperature and an amplitude representative of the thermocouple temperature, whereby the combined signals represent the true temperature of the part.
摘要:
A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
摘要:
The present invention provides near-surface cooled airfoils that can be made with near-surface cooling passages that are completely free of any leachable or otherwise sacrificial material in the recessed portion of the outer surface of the core. The turbine airfoil comprises a metallic core or substrate having an outer surface and one or a plurality of recessed portions of the outer surface; an intermediate metallic skin or foil having a back surface and a top surface, the back surface of the intermediate skin being bonded to the outer surface of the core such that the recessed portion(s) is sufficiently enclosed so as to form at least one or more near-surface cooling passages or pathways; and at least one or more metallic coatings of a high temperature-resistant metallic material deposited on a top surface of the intermediate skin.
摘要:
In one embodiment, a floor tile includes a body having a top side, a bottom side, and multiple lateral sides, and an integrated flow control element extending down from the bottom side, the flow control element being configured to control the flow of air below the floor tile.
摘要:
A wear sensor (30, 50, 60) installed on a surface area (24) of a component (20, 21) subject to wear from an opposing surface (74, 75). The sensor has a proximal portion (32A, 52A, 62A) and a distal portion (32C, 52C, 62C) relative to a wear starting position (26). An electrical circuit (40) measures an electrical characteristic such as resistance of the sensor, which changes with progressive reduction of the sensor from the proximal portion to the distal portion during a widening reduction wear of the surface from the starting position. The measuring circuit quantifies the electrical changes to derive a wear depth based on a known geometry of the wear depth per wear width. In this manner, wear depth may be measured with a surface mounted sensor.