Abstract:
A high-sensitivity SPR (surface plasmon resonance) sensor includes at least a prism having a first surface on which a metallic layer and a metallic nanoparticle layer are sequentially formed. A light source projects an incident light into the prism through a second surface of the prism. The light is reflected by the metallic layer and the metallic nanoparticle layer and leaves the prism through a third surface of the prism. A light detector detects the reflected light. The SPR sensor has an extensive detection range as compared with the conventional ones and is applicable in the detection of gas, chemical substance, and biomolecule. Moreover, the SPR sensor is advantageous in arranging fabrication process consistently, controlling film thickness, improving product quality, and decreasing fabrication cost.
Abstract:
An IC, a circuitry, and an RF BIST system are provided. The RF BIST system includes a test equipment, a module circuitry, and an IC. The IC is arranged to communicate with the module circuitry by an RF signal in response to a command signal from the test equipment, determine a test result by the RF signal, and report the test result to the test equipment, wherein the module circuitry is external to the IC and the test equipment.
Abstract:
A representative electrostatic discharge (ESD) protection circuit includes a silicon-controlled rectifier comprising an alternating arrangement of a first P-type semiconductor material, a first N-type semiconductor material, a second P-type semiconductor material and a second N-type semiconductor material electrically coupled between an anode and a cathode. The anode is electrically coupled to the first P-type semiconductor material and the cathode is electrically coupled to the second N-type semiconductor material. The ESD protection circuit further includes an inductor electrically coupled between the anode and the second P-type semiconductor material or between the cathode and the first N-type semiconductor material.
Abstract:
A portable computer includes a display module, and a hinge module. One end of the hinge module is connected to the display module. The portable computer further includes a host module. The host module includes a housing whereon an accommodating space is formed. The other end of the hinge module is fixed inside the accommodating space. The portable computer further includes a battery component installed on the housing for covering the accommodating space so as to cover the hinge module.
Abstract:
A control circuit and a control method for a capacitive touch panel are provided. Therein, while a scanning signal charges and discharges each trace on the capacitive touch panel, a signal in phase with the scanning signal is provided to traces adjacent to the scanned trace or a ground layer under the scanned trace so as to lower parasitic capacitances between the scanned trace and the ground layer or other traces, thereby decreasing a base capacitance of the capacitive touch panel and enhancing a sensing result of the control circuit as well as providing a shielding effect and reducing noise interference so that the capacitive touch panel has improved performance.
Abstract:
An exemplary injection mold for manufacturing a fiber optic connector includes a first mold, a second mold, an insert, two first positioning bar, and four second positioning bars. The first mold and the second mold cooperatively define a mold cavity. The mold cavity includes two lens molding recesses. The two inserts are attached to the second mold and located in the mold cavity. A dimension of each second bar in cross section is substantially smaller than that of each first positioning bar. One first positioning bar and two second positioning bars are arranged around each insert to position the insert, such that the inserts is suspended in the mold cavity and precisely aligns with the respective molding recesses.
Abstract:
An apparatus for molding optical fiber connector is provided. The optical fiber connector includes a main body. The main body has a blind hole for receiving an optical fiber two opposite surfaces being substantially parallel with the blind hole, and a lens portion aligned with the blind hole. The apparatus comprises a molding cavity and an insert for forming the blind hole. The molding cavity includes a central portion for forming the main body, a lens-forming portion for forming the lens portion, and two lateral portions for forming the corresponding surfaces. The molding cavity includes a first gate and a second gate for introducing molding material into the molding cavity. The first gate is located between the insert and one of the two lateral portions and the second gate is defined between the insert and the other one of the lateral potions.
Abstract:
An electrostatic discharge (ESD) circuit, adaptive to a radio frequency (RF) device, which includes a RF circuit coupled between a VDD power rail and a VSS power rail and having a RF I/O pad, includes an ESD clamp circuit coupled between a VDD power rail node and the VSS power rail node and a LC-tank structure coupled between the VDD power rail node and the VSS power rail node and to the RF I/O pad. The LC-tank structure includes a first ESD block between the VDD power rail node and the RF I/O pad, and a second ESD block between the VSS power rail node and the RF I/O pad. At least one of the first and second ESD blocks includes a pair of diodes coupled in parallel with each other and an inductor coupled in series with one of the pair of diodes.
Abstract translation:适用于射频(RF)装置的静电放电(ESD)电路,其包括耦合在VDD电源轨和VSS电源轨之间并具有RF I / O焊盘的RF电路,包括耦合在 VDD电源轨节点和VSS电源轨节点以及耦合在VDD电源轨节点和VSS电源轨节点之间以及RF I / O焊盘的LC槽结构。 LC槽结构包括VDD电源轨节点和RF I / O焊盘之间的第一个ESD模块,以及VSS电源轨节点和RF I / O焊盘之间的第二个ESD模块。 第一和第二ESD块中的至少一个包括彼此并联耦合的一对二极管和与一对二极管中的一个串联耦合的电感器。
Abstract:
An embodiment of the invention provides an integrated circuit. The integrated circuit has an analog device-under-test (DUT), a memory receiving and storing a test program and a processor. The processor tests the analog DUT and outputs a test result in digital format by executing the test program, wherein the test result indicates whether the analog DUT workable according to a specification.
Abstract:
An electrostatic discharge (ESD) clamp circuit is provided, which includes a plurality of identical module circuits. The anode of the first module circuit is coupled to the cathode of the ESD clamp circuit. The anode of each of the other module circuits is coupled to the cathode of the previous module circuit. The cathode of the last module circuit is coupled to the ground terminal of the ESD clamp circuit. Each module circuit includes a conduction path and a detection circuit. The detection circuit is coupled to the anode, the cathode and the conduction path of the module circuit. When the rising speed of the voltage at the anode of the module circuit surpasses a threshold value, the detection circuit makes the conduction path conducting.