Abstract:
An integrated optical transmitter includes a modulator drive circuit in communication with a modulator, and a laser drive circuit in communication with a laser. The modulator receives laser light from the laser and modulation control signals from the modulator drive circuit, and outputs modulated optical signals in a direction normal to the substrate surface. The transmitter is integrated by securing the laser to the modulator using flip chip technology. The laser includes a vertical cavity, and is optically aligned with the horizontal coupling surface of the modulator during the flip chip process.
Abstract:
A surface-emitting laser system includes a laser that emits a vertically divergent beam generally parallel to the substrate on which it is formed, and a turning mirror in the path of the beam that extends up from the substrate to a level well above the laser height. The extended mirror area reflects a greater portion of the beam than prior planar designs, increasing the output efficiency and providing a smoother beam pattern. One fabrication method employs a masking and ion beam milling technique that uses an accumulation of redeposited material to form the additional mirror area, with a thick mask layer that is later removed guiding the redeposition. An alternate fabrication method involves epitaxial growth of an additional layer of material above the conventional laser epilayers, with the additional layer subsequently removed from the laser region but retained in the mirror region.
Abstract:
A surface-emitting laser system includes a laser that emits a vertically divergent beam generally parallel to the substrate on which it is formed, and a turning mirror in the path of the beam that extends up from the substrate to a level well above the laser height. The extended mirror area reflects a greater portion of the beam than prior planar designs, increasing the output efficiency and providing a smoother beam pattern. One fabrication method employs a masking and ion beam milling technique that uses an accumulation of redeposited material to form the additional mirror area, with a thick mask layer that is later removed guiding the redeposition. An alternate fabrication method involves epitaxial growth of an additional layer of material above the conventional laser epilayers, with the additional layer subsequently removed from the laser region but retained in the mirror region.
Abstract:
An apparatus and method for a detector are disclosed. The apparatus disclosed contains a non-absorbing layer shaped as one or more pyramids, one or more collector regions, an absorber layer disposed between the one or more collector regions and the non-absorbing layer, a first electrical contact, and a second electrical contact, wherein the absorber layer is configured to absorb photons of incident light and generate minority electrical carriers and majority electrical carriers, wherein the one or more collector regions are electrically connected with the absorber layer and with the first electrical contact for extracting the minority electrical carriers, and the absorber layer is electrically connected with the one or more collector regions and with the second electrical contact to extract the majority electrical carriers.
Abstract:
An optical-waveguide grating modulator is compatible with high-frequency electrical modulation signals of limited bandwidth. The modulator comprises an optical grating formed in an optical waveguide constructed from electro-optic (EO) material and an electrode that is an RF waveguide or RF transmission line that conducts a traveling-wave electromagnetic (EM) field and that contains a portion of the optical-grating waveguide with a continuous grating. The RF input modulation signal is coupled into an RF EM field that propagates through the RF waveguide or transmission line in a direction that is parallel to the direction the light propagates in the optical-grating waveguide and that EM field overlaps the optical-grating waveguide. The light travels along the optical-grating waveguide preferably at the same velocity as the RF EM field travels along the RF waveguide or transmission line.
Abstract:
The present invention describes a microresonator that can be used as a 1:f variable coupler in a unit cell. It is described how a cascade of unit cells can be used to form a tunable, higher-order RF-filter with reconfigurable passbands. The disclosed filter structure can be utilized for the narrowband channelization of RF signals that have been modulated onto optical carriers. It is also disclosed how to utilize add/drop capabilities of the contemplated microdisks to confer connectivity and cascading in two dimensions. The present invention can conveniently provide a wavelength division multiplexing router, where an array of unit cells as provided herein can form a programmable optical switching matrix, through electronic programming of filter parameters.
Abstract:
An absorber is disclosed. The disclosed absorber contains a base layer, and a pyramidally shaped absorbing material disposed above the base layer and configured to absorb an incident light and generate minority electrical carriers and majority electrical carrier, wherein the pyramidally shaped absorbing material defines a plurality of holes within it.
Abstract:
An apparatus and method for a detector are disclosed. The apparatus disclosed contains an extractor layer, an absorber layer disposed adjacent to the extractor layer, a first electrical contact and a second electrical contact. The absorber layer is configured to absorb photons of incident light and generate minority electrical carriers and majority electrical carriers. In the disclosed apparatus, the top surface of the absorber layer is shaped as a pyramid, the extractor layer is electrically connected with the absorber layer and with the first electrical contact for extracting the minority electrical carriers, and the absorber layer is electrically connected with the extractor layer and with the second electrical contact to extract the majority electrical carriers.
Abstract:
The invention is a multi-color display screen that has built in optical memory for each pixel location. The optical memory is optically read and optically programmed. The screen itself distinguishes between the specific colors from which a full-color (or multi-color) image is constructed and modulates the intensities of the component colors that it directs toward a viewer. The screen provides enhanced image resolution and reduces information bandwidth required to control the display the image.
Abstract:
A method of and apparatus for modulating an optical carrier by an incident electromagnetic field. The electromagnetic field propagates in a dielectric-filled transverse electromagnetic waveguide, At least one slice of an electro-optic material is disposed in the dielectric-filled transverse electromagnetic waveguide, the electro-optic material in the dielectric-filled transverse electromagnetic waveguide having at least one optical waveguide therein which has at least a major portion thereof guiding light in a direction orthogonal with respect to a direction in which the dielectric-filled transverse electromagnetic waveguide guides the incident electromagnetic field. Light is caused to propagate in the at least one optical waveguide in the at least one slice of an electro-optic material in the dielectric-filled transverse electromagnetic waveguide for modulation by the incident electromagnetic field.