摘要:
High-density semiconductor memory utilizing metal control gate structures and air gap electrical isolation between discrete devices in these types of structures are provided. During gate formation and definition, etching the metal control gate layer(s) is separated from etching the charge storage layer to form protective sidewall spacers along the vertical sidewalls of the metal control gate layer(s). The sidewall spacers encapsulate the metal control gate layer(s) while etching the charge storage material to avoid contamination of the charge storage and tunnel dielectric materials. Electrical isolation is provided, at least in part, by air gaps that are formed in the row direction and/or air gaps that are formed in the column direction.
摘要:
A semiconductor device including a plurality of copper interconnects. At least a first portion of the plurality of copper interconnects has a meniscus in a top surface. The semiconductor device also includes a plurality of air gaps, wherein each air gap of the plurality of air gaps is located between an adjacent pair of at least the first portion of the plurality of bit lines.
摘要:
Monolithic, three dimensional NAND strings include a semiconductor channel, at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes having a strip shape extending substantially parallel to the major surface of the substrate, the blocking dielectric comprising a plurality of blocking dielectric segments, a plurality of discrete charge storage segments, and a tunnel dielectric located between each one of the plurality of the discrete charge storage segments and the semiconductor channel.
摘要:
A nonvolatile memory array includes floating gates that have an inverted-T shape in cross section along a plane that is perpendicular to the direction along which floating cells are connected together to form a string. Adjacent strings are isolated by shallow trench isolation structures.
摘要:
Air gap isolation in non-volatile memory arrays and related fabrication processes are provided. Air gaps are formed at least partially in isolation regions between active areas of the substrate. The air gaps may further extend above the substrate surface between adjacent layer stack columns. A sacrificial material is formed at least partially in the isolation regions, followed by forming a dielectric liner. The sacrificial material is removed to define air gaps prior to forming the control gate layer and then etching it and the layer stack columns to form individual control gates and columns of non-volatile storage elements.
摘要:
Techniques are provided for fabricating memory with metal nanodots as charge-storing elements. In an example approach, metal salt ions are added to a core of a copolymer solution. A metal salt reduction causes the metal atoms to aggregate in the core, forming a metal nanodot. The copolymer solution is applied to a gate oxide on a substrate using spin coating or dip coating. Due to the copolymer configuration, the nanodots are held in a uniform 2D grid on the gate oxide. The polymers are selected to provide a desired nanodot size and spacing between nanodots. A polymer cure and removal process leaves the nanodots on the gate oxide. In a configuration using a control gate over a high-k dielectric floating gate which includes the nanodots, the control gates may be separated by etching while the floating gate dielectric extends uninterrupted since the nanodots are electrically isolated from one another.
摘要:
High-density semiconductor memory is provided with enhancements to gate-coupling and electrical isolation between discrete devices in non-volatile memory. The intermediate dielectric between control gates and charge storage regions is varied in the row direction, with different dielectric constants for the varied materials to provide adequate inter-gate coupling while protecting from fringing fields and parasitic capacitances. Electrical isolation is further provided, at least in part, by air gaps that are formed in the column (bit line) direction and/or air gaps that are formed in the row (word line) direction.
摘要:
A nonvolatile memory array includes floating gates that have an inverted-T shape in cross section along a plane that is perpendicular to the direction along which floating cells are connected together to form a string. Adjacent strings are isolated by shallow trench isolation structures.
摘要:
Methods for forming patterns having triple the line frequency of a first pattern using only a single spacer are disclosed. For example, the first pattern is formed in a first and a second material using a lithographic process. Sidewall spacers are formed from a third material adjacent to exposed sidewalls of features in the second material. The width of the features in the first pattern in the first material is reduced. For example, the width is reduced to about the target width of features in a final pattern. The width of features in the first pattern in the second material is reduced using remaining portions of the first material as a mask. A second pattern is formed based on remaining portions of the second material and the sidewall spacers. The features in the second pattern may be lines having about ⅓ the width of lines in the first pattern.
摘要:
High density semiconductor devices and methods of fabricating the same are provided. Spacer fabrication techniques are utilized to form circuit elements having reduced feature sizes, which in some instances are smaller than the smallest lithographically resolvable element size of the process being used. Spacers are formed that serve as a mask for etching one or more layers beneath the spacers. An etch stop pad layer having a material composition substantially similar to the spacer material is provided between a dielectric layer and an insulating sacrificial layer such as silicon nitride. When etching the sacrificial layer, the matched pad layer provides an etch stop to avoid damaging and reducing the size of the dielectric layer. The matched material compositions further provide improved adhesion for the spacers, thereby improving the rigidity and integrity of the spacers.