摘要:
Provided are a semiconductor memory device and a magneto-logic circuit which change the direction of a magnetically induced current according to a logical combination of logic states of a plurality of input values. The semiconductor memory device comprises a current driving circuit, a magnetic induction layer, and a resistance-variable element. The current driving circuit receives a plurality of input values and changes the direction of a magnetically induced current according to a logical combination of logic states of the input values. The magnetic induction layer induces magnetism having a direction varying according to the direction of the magnetically induced current. The resistance-variable element has a resistance varying according to the direction of the magnetism induced by the magnetic induction layer.
摘要:
A semiconductor memory device may include a semiconductor substrate, at least one control gate electrode, at least one storage node layer, at least one tunneling insulating layer, at least one blocking insulating layer, and/or first and second channel regions. The at least one control gate electrode may be recessed into the semiconductor substrate. The at least one storage node layer may be between a sidewall of the at least one control gate electrode and the semiconductor substrate. The at least one tunneling insulating layer may be between the at least one storage node layer and the at least one control gate electrode. The at least one blocking insulating layer may be between the storage node layer and the control gate electrode. The first and second channel regions may be between the at least one tunneling insulating layer and the semiconductor substrate to surround at least a portion of the sidewall of the control gate electrode and/or may be separated from each other.
摘要:
An exemplary embodiment of a magnetic random access memory (MRAM) device includes a magnetic tunnel junction having a free layer, a first electrode (first magnetic field generating means) having a first portion that covers a surface of the free layer, and an electric power source connected to the first electrode via a connection that covers less than half of the first portion of the first electrode. Another exemplary embodiment of an MRAM device includes a magnetic tunnel junction, first and second electrodes (first and second magnetic field generating means) directly connected to the magnetic tunnel junction on opposite sides of the magnetic tunnel junction, and an electric power source having one pole connected to the first electrode via a first connection and having a second pole connected to the second electrode via a second connection, wherein the first and second connections are laterally offset from the connections between the first and second electrodes and the magnetic tunnel junction. Methods of operating and manufacturing these magnetic random access memories are also disclosed.
摘要:
A tunneling magnetoresistive device and a magnetic head including the tunneling magnetoresistive device are provided. The tunneling magnetoresistive device includes a pinned layer and a free layer formed on either side of a tunneling barrier layer, wherein the tunneling barrier layer includes Te—O.
摘要:
Provided is a multi-stack memory device that includes a storage unit group including a plurality of storage units that are vertically stacked and form a plurality of storage unit rows, and a plurality of transistors connected to the storage unit group, wherein the transistors that are connected to the storage units which are included in at least two rows of the plurality of the storage unit rows and are connected by a common wire. The common wire may be a gate line or a bit line.
摘要:
A semiconductor memory device may include a semiconductor substrate, a control gate electrode recessed in the semiconductor substrate, a storage node layer between the control gate electrode and the semiconductor substrate, a tunneling insulating layer between the storage node layer and the semiconductor substrate, a blocking insulating layer between the storage node layer and the control gate electrode, and first and second channel regions surrounding the control gate electrode and separated by a pair of opposing separating insulating layers. A method of operating the semiconductor memory device may include programming data in the storage node layer by charge tunneling through the blocking insulating layer, thus achieving relatively high reliability and efficiency.
摘要:
Provided are a multi-purpose magnetic film structure using a spin charge, a method of manufacturing the same, a semiconductor device having the same, and a method of operating the semiconductor memory device. The multi-purpose magnetic film structure includes a lower magnetic film, a tunneling film formed on the lower magnetic film, and an upper magnetic film formed on the tunneling film, wherein the lower and upper magnetic films are ferromagnetic films forming an electrochemical potential difference therebetween when the lower and upper magnetic films have opposite magnetization directions.
摘要:
A memory device with a magnetic field generator and method of operating and manufacturing the same. In the device and method, a magnetic memory may includes a magnetic tunneling junction (MTJ) cell, a transistor, and a bit line, and a magnetic field generator external to the magnetic memory to generate a global magnetic field toward the magnetic memory in a parallel direction to the bit line.
摘要:
A magnetic tunneling junction (MTJ) cell includes a free magnetic layer having a low magnetic moment, and a magnetic random access memory (MRAM) includes the MTJ cell. The MTJ cell of the MRAM includes a lower electrode, a lower magnetic layer, a tunneling layer, an upper magnetic layer and an upper electrode, which are sequentially stacked on the lower electrode. The upper magnetic layer includes a free magnetic layer having a thickness of about 5 nm or less. The MTJ cell may have an aspect ratio of about 2 or less, and the free magnetic layer may have a magnetic moment of about 800 emu/cm3 or less.
摘要翻译:磁性隧道结(MTJ)单元包括具有低磁矩的自由磁性层,磁性随机存取存储器(MRAM)包括MTJ单元。 MRAM的MTJ单元包括依次堆叠在下电极上的下电极,下磁层,隧道层,上磁层和上电极。 上磁性层包括厚度约5nm以下的自由磁性层。 MTJ单元可以具有约2或更小的纵横比,并且自由磁性层可具有约800emu / cm 3以下的磁矩。
摘要:
A non-linear response correction apparatus and method reduce look up table size and output error. In one embodiment, a range of an N-bit input signal is split into two or more sectors, based on a gradient of a non-linear correction curve and an allowable error, and then a N-bit input signal is divided into U upper bits and D lower bits where U and D depend on which sector contains the input signal. First and second look up tables read first and second data stored therein, respectively, using the upper bits of the digital signal as an address. The first data is the difference between a corrected signal and the input signal, and the second data is the gradient of the corrected signal with respect to the gradient of the input signal. The second data read from the second look up table is multiplied by the lower bits, and the first data read from the first look up table is added to the upper bits. The sum is added to the product to produce an N-bit digital corrected signal that compensates for the non-linear characteristics.