Abstract:
Embodiments of the present invention generally relate to circuits, systems and methods that can be used to detect light beam misalignment, so that compensation for such misalignment can be performed. In accordance with an embodiment, a circuit includes a photo-detector (PD) having a plurality of electrically isolated PD segments. Additionally, the circuit has circuitry, including switches, configured to control how currents indicative of light detected by the plurality of electrically isolated PD segments are arithmetically combined. When the switches are in a first configuration, a signal produced by the circuitry is indicative of vertical light beam alignment. When the switches are in a second configuration, the signal produced by the circuitry is indicative of horizontal light beam alignment. The signals indicative of vertical light beam alignment and horizontal light beam alignment can be used detect light beam misalignment, so that compensation for such misalignment can be performed.
Abstract:
A voltage margin circuit has an input that receives a control voltage for programming an output reference voltage. The control voltage is coupled through an input resistor to an operational amplifier, referenced to a voltage midway between the voltage range of the input voltage and having its output coupled to a pair of transistors, whose current flow paths are coupled to inputs of a first pair of current mirrors. Outputs of the first current mirrors pair are cross-coupled to inputs of a second current mirrors pair. Outputs of the second current mirror pair are coupled through an output resistor to a prescribed voltage. The output reference voltage is the sum of the prescribed voltage and an offset as the product of the output resistor and an output current supplied by one of the third and fourth current mirrors.
Abstract:
The present invention relates to inductors with improved inductance and quality factor. In one embodiment, a magnetic thin film inductor is disclosed. In this embodiment, magnetic thin film inductor includes a plurality of elongated conducting regions and magnetic material. The plurality of elongated conducting regions are positioned parallel with each other and at a predetermined spaced distance apart from each other. The magnetic material encases the plurality of conducting regions, wherein when currents are applied to the conductors, current paths in each of the conductors cause the currents to generally flow in the same direction thereby enhancing mutual inductance.
Abstract:
An integrated circuit including a bipolar transistor with improved forward second breakdown is disclosed. In one embodiment, the bipolar transistor includes a base, a collector, a plurality of emitter sections coupled to a common emitter and a ballast emitter for each emitter section. Each ballast resistor is coupled between the common emitter and an associated emitter section. The size of each ballast resistor is selected so that the size of the ballast resistors vary across a two dimensional direction in relation to a lateral surface of the bipolar transistor.
Abstract:
A digitally-implemented pulse width modulation (PWM) signal generator forms the PWM pulse width as a rational number based on full cycles of a PWM reference clock, and offers a very high effective resolution of the PWM pulse signal that is compatible with multiphase DC-DC converters. Being totally digital allows digital error accumulation and correction to occur at the point of origin of the PWM signal, well upstream of the relatively slow voltage control feedback loop. Quantization errors are corrected before they can accumulate in the converter's DC output voltage.
Abstract:
An electronic device may include a circuit board, at least one load circuit carried by the circuit board, and a power distribution conductor carried by the circuit board and connected to the at least one load circuit. The electronic device may also include a multiphase switching regulator including a plurality of output stages connected to the power distribution conductor, and a controller for controlling the output stages based upon respective phase currents. The respective phase currents may be derived from corresponding voltage drops across the power distribution conductor and a matrix of resistivity values.
Abstract:
A monolithic 1.75 is mounted in a speaker cabinet 1.71 to drive the voice coil 1.74 of the speaker 1.70. The monolithic integrated circuit may be a class D amplifier 1.10, and is at least a half-bridge or full bridge power MOSFET device. Structures and process for forming the mos switching devices 2.20 of the bridge driver circuits are disclosed. Also disclosed is the Nnull buried layer 4.14 of the QVDMOS transistors 4.43 of the bridge circuits.
Abstract:
A multiphase ripple voltage regulator generator employs a hysteretic comparator referenced to upper and lower voltage thresholds. The hysteretic comparator monitors a master ripple voltage waveform developed across a capacitor supplied with a current proportional to the difference between the output voltage and either the input voltage or ground. The output of the hysteretic comparator generates a master clock signal that is sequentially coupled to PWM latches, the states of which define the durations of respective components of the synthesized ripple voltage. A respective PWM latch has a first state initiated by a selected master clock signal and terminated by an associated phase voltage comparator that monitors a respective phase node voltage.
Abstract:
A bandgap reference-based voltage and current generator has a distributed circuit architecture, to reduce the number of voltage dropping components between voltage supply rails containing bandgap voltage generator circuitry. Base current error compensation circuitry is incorporated into current mirror circuits of the generator to yield a composite current having a desired component, defined exclusively in accordance with the desired bandgap voltage, and a base error component containing the desired bandgap voltage, but modified by a second base current error. By differentially combining these two components, the multiple port output current mirror stage removes the base error component of the composite current, leaving only the desired bandgap-based component at each of plural precision output current ports.
Abstract:
A multi-phase DC-DC converter architecture in which parameters including error signal gains and modulator gains are defined so as to balance multiple converter channel currents, irrespective of whether the converter channels are supplied with the same or different input voltages.