Abstract:
A display device includes: a first panel having a pixel region including a pixel electrode therein; a second panel having a common electrode facing the first panel; a liquid crystal layer having vertically aligned liquid crystal molecules interposed between the first and second panels; a first alignment layer disposed on the pixel electrode; and a second alignment layer disposed on the common electrode. At least one of the pixel electrode and the common electrode has a micro slit pattern. At least one of the first and second alignment layers divides the pixel region into domains, is formed to have pretilt directions corresponding to a given domain, and pretilts the vertically aligned liquid crystal molecules in the given domain. A direction of summed horizontal components of a fringe field at an edge of the pixel region is substantially equal to a direction of summed horizontal components of a pretilt direction of the at least one of the first and second alignment layer.
Abstract:
An internal voltage generator includes: a detection unit configured to detect a level of an internal voltage in comparison to a reference voltage; a first driving unit configured to discharge an internal voltage terminal, through which the internal voltage is outputted, in response to an output signal of the detection unit; a current detection unit configured to detect a discharge current flowing through the first driving unit; and a second driving unit configured to charge the internal voltage terminal in response to an output signal of the current detection unit.
Abstract:
A semiconductor memory apparatus includes non-inversion repeaters that non-invert data and output the inverted data; and inversion repeaters that invert data and output the inverted data. The non-inversion repeaters or the inversion repeaters are arranged on a first data line and a second data line at a predetermined distance, respectively, which are parallel with each other and the most adjacent to each other and the non-inversion repeater or the inversion repeater is arranged at first positions corresponding to the first data line and the second data line, respectively. The non-inversion repeaters are arranged on one of the first data line and the second data line while the inversion repeaters are arranged on the other first data line and the second data line, at second positions except for the first arrangement positions of positions corresponding to the first data line and the second data line, respectively.
Abstract:
A liquid crystal display includes; a first substrate, a second substrate disposed facing the first substrate, an alignment layer disposed on at least one of the first substrate and the second substrate, wherein the alignment layer comprises a major alignment material and a vertical photo-alignment material, and the vertical photo-alignment material comprises a first vertical functional group, and a liquid crystal layer interposed between the first substrate and the second substrate.
Abstract:
A data output circuit includes a serial data output unit for outputting a plurality of parallel data as serial data according to an operation mode, an internal information output unit for outputting internal information data according to the operation mode, and a buffering unit for receiving the serial data and the internal information data through an identical input end and buffering the received data.
Abstract:
The present invention provides photo-reactive compound. The photo-reactive compound, in which chains are combined to a polymer backbone that is used for a photo-alignment layer compound, is represented by the following Formula 1 or Formula 2. L denotes a substituted or unsubstituted alkyl group having at least 1 but no more than 18 carbons, V denotes a substituted or unsubstituted alkyl group having at least 1 but no more than 18 carbons, R1, R2, and R3 each denote H or a substituted or unsubstituted alkyl group having at least 1 but no more than 18 carbons, X+Y=1, 0
Abstract:
A latch circuit includes a data input/output unit configured to form a current path through a first node in response to an input data to output an output data, a holding unit configured to form a current path through a second node in response to the output data to store the output data, and a clock input unit coupled to the first and second nodes in parallel in response to a clock.
Abstract:
A semiconductor device including an edge synchronizer which outputs a synchronized strobe signal generated by synchronizing a transition time point of a strobe signal with clock edges of a main clock or a sub clock, a detector which outputs a phase determination signal indicating a phase difference between the main clock and the sub clock in response to the synchronized strobe signal, and a duty ratio corrector which adjusts a duty ratio of the main clock and the sub clock in response to the phase determination signal.
Abstract:
The present invention relates to a semiconductor packaging method. The method comprises (S1) applying a die adhesive to an upper surface of a member through screen-printing; (S2) B-stage curing the member having the die adhesive; (S3) attaching a die on the B-stage cured die adhesive; (S4) wire-bonding the die to the member; and (S5) encapsulating the outside of the resultant, after the B-stage curing process of the step S2, a degree of cure of the die adhesive shows a decrease in heat capacity by 80 to 100%, and the step S3 is performed such that the die adhesive maintains an adhesive strength of 10 kgf/cm2 or more at normal temperature after the die attaching.