Abstract:
A bipolar transistor is produced by processes employed in the manufacture of CMOS nonvolatile memory devices, and is part of an integrated circuit. The integrated circuit includes a semiconductor substrate having a first type of conductivity, a PMOS transistor formed in said substrate, an NMOS transistor formed in said substrate, and the bipolar transistor. The bipolar transistor includes: a buried semiconductor layer having a second type of conductivity placed at a prescribed depth from the surface of said bipolar transistor, an isolation semiconductor region having the second type of conductivity, in direct contact with said buried semiconductor layer, and suitable for delimiting a portion of said substrate, forming a base region; an emitter region formed within said base region having the second type of conductivity, a base contact region of said transistor formed within said base region having the first type of conductivity, a collector contact region formed within said isolation semiconductor region having the second type of conductivity, wherein said base region has a doping concentration between 1016 and 1017 atoms/cm3.
Abstract:
A process formes a structure incorporating at least one circuitry transistor and at least one non-volatile memory cell of the EEPROM type with two self-aligned polysilicon levels having a storage transistor and an associated selection transistor in a substrate of semiconductor material including field oxide regions bounding active area regions. The process comprises the steps of in the active area regions, forming a gate oxide layer and defining a tunnel oxide region included in the gate oxide layer depositing and partly defining a first polysilicon layer forming an interpoly dielectric layer and removing the interpoly dielectric layer at least at the circuitry transistor depositing a second polysilicon layer selectively etching away the second polysilicon layer at the cell, and the first and second polysilicon layers at the circuitry transistor and selectively etching away the interpoly dielectric layer and the first polysilicon layer at the cell. After forming and before partially defining the first polysilicon layer, the process implants at least at the channel region of the floating-gate storage transistor for adjusting the transistor threshold.
Abstract:
A semiconductor memory includes a plurality of memory cells connected to one another to form a matrix of memory cells. A charge pump is connected to the matrix of memory cells. A plurality of controllable connection elements are provided, with each controllable connection element connected between an output terminal of the charge pump and a respective column line. Connected to the output of the charge pump is the series connection of a first element equivalent to a controllable connection element, and a second element equivalent to a memory cell in a predetermined biasing condition. A voltage regulator is connected between the second equivalent element and the input terminal of the charge pump for regulating the output voltage therefrom based upon a voltage present between terminals of the second equivalent element.
Abstract:
A FLASH memory is organized in a plurality of physical sectors which may be split into a plurality of singularly addressable logic sectors. Each logic sector may include a memory space of a predetermined size and a chain pointer assuming a neutral value or a value pointing to a second logic sector associated with a respective chain pointer at the neutral value. Each logic sector may also include a status indicator assuming at least one of a first value if the logic sector is empty, a second value if the data therein belongs to the logic sector, a third value if the data does not belong to the logic sector, and a fourth value if the data has been erased. Further, each logic sector may include a remap pointer assuming the neutral value or a value pointing directly or indirectly to the chain pointer of a third logic sector.
Abstract:
In accordance with an embodiment, a digital-to-analog converter (DAC) includes: a W-2W current mirror comprising a first plurality of MOS transistors and a second plurality of MOS transistors, wherein ones of the second plurality of MOS transistors are coupled between adjacent ones of the first plurality of MOS transistors; and a bulk bias generator having a plurality of output nodes coupled to corresponding bulk nodes of the first plurality of MOS transistors, wherein the plurality of output nodes are configured to provide voltages that are inversely proportional to temperature.
Abstract:
In accordance with an embodiment, a method of measuring a load current flowing through a current measurement resistor coupled between a source node and a load node includes: measuring a first voltage across a replica resistor when a first end of the replica resistor is coupled to the source node and a second end of the replica resistor is coupled to a reference current source; measuring a second voltage across the replica resistor when the second end of the replica resistor is coupled to the source node and the first end of the replica resistor is coupled to the reference current source; measure a third voltage across the current sensing resistor; and calculating a corrected current measurement of the load current based on the measured first voltage, the measured second voltage and the measured third voltage.
Abstract:
A circuit includes an amplifier and a feedback network coupled between the input and the output of the amplifier. The feedback network includes a plurality of parallel coupled branches, each branch having a first selection switch coupled to the input, a second selection switch coupled to the output, and an impedance between the first and second selection switches. Each branch includes a plurality of signal feedback paths coupled in parallel, each having a tuning switch coupled between the first selection switch and the second selection switch of that branch. A control unit is coupled to the feedback network and configured to vary a gain of the amplifier by selectively placing the first and second selection switches of each branch in a conductive state or a non-conductive state and selectively activating respective tuning switches of any branch having first and second selection switches in the conductive state.
Abstract:
A voltage regulator receives an input voltage and produces a regulated output voltage. A first feedback network compares a feedback signal to a reference signal to assert/de-assert a first pulsed control signal when the reference signal is higher/lower than the feedback signal. A second feedback network compares the output voltage to a threshold signal to assert/de-assert a second control signal when the threshold signal is higher/lower than the output voltage. A charge pump is enabled if the second control signal is de-asserted and is clocked by the first pulsed control signal to produce a supply voltage higher than the input voltage. A first pass element is enabled when the second control signal is asserted and is selectively activated when the first pulsed control signal is asserted. A second pass element is selectively activated when the second control signal is de-asserted.
Abstract:
A circuit includes a high-side switch and a low-side switch. A first inverter includes first and second discharge current paths activatable to sink first and second discharge currents, respectively, from the control terminal of the high-side switch. A second inverter includes first and second charge current paths activatable to source first and second charge currents to the control terminal of the low-side switch. A high-side sensing current path includes an intermediate high-side control node, and a low-side sensing current path includes an intermediate low-side control node. The second discharge current path is selectively enablable in response to a high-side detection signal at the intermediate high-side control node having a high logic value, and the second charge current path is selectively enablable in response to a low-side detection signal at the intermediate low-side control node having a low logic value.
Abstract:
A circuit includes a high-side switch and a low-side switch. A first inverter includes first and second discharge current paths activatable to sink first and second discharge currents, respectively, from the control terminal of the high-side switch. A second inverter includes first and second charge current paths activatable to source first and second charge currents to the control terminal of the low-side switch. A high-side sensing current path includes an intermediate high-side control node, and a low-side sensing current path includes an intermediate low-side control node. The second discharge current path is selectively enablable in response to a high-side detection signal at the intermediate high-side control node having a high logic value, and the second charge current path is selectively enablable in response to a low-side detection signal at the intermediate low-side control node having a low logic value.