Abstract:
A dichalcogenide thermoelectric material having a very low thermal conductivity in comparison with a conventional metal or semiconductor is described. The dichalcogenide thermoelectric material has a structure of Formula 1 below: RX2-aYa Formula 1 wherein R is a rare earth or transition metal magnetic element, X and Y are each independently an element selected from the group consisting of S, Se, Te, P, As, Sb, Bi, C, Si, Ge, Sn, B, Al, Ga, In, and a combination thereof, and 0≦a
Abstract translation:描述了与常规金属或半导体相比具有非常低热导率的二硫属元素化物质热电材料。 二硫属元素化物热电材料具有以下结构:RX2-aYa式1其中R是稀土或过渡金属磁性元素,X和Y各自独立地选自S,Se,Te,P ,As,Sb,Bi,C,Si,Ge,Sn,B,Al,Ga,In及其组合,0 <= a <2。
Abstract:
A PRAM and a fabricating method thereof are provided. The PRAM includes a transistor and a data storage capability. The data storage capability is connected to the transistor. The data storage includes a top electrode, a bottom electrode, and a porous PCM layer. The porous PCM layer is interposed between the top electrode and the bottom electrode.
Abstract:
A polymer composite having a high dielectric constant is disclosed herein. The polymer composite includes a conductive material impregnated with oxidizable metal nanoparticles or metal oxide nanoparticles to decrease dielectric loss, and an anion surfactant containing an acidic functional group to form a passivation layer that surrounds the conductive material, resulting in increased dielectric constant.
Abstract:
Disclosed is a polymeric surfactant for high dielectric polymer composites, a method of preparing the same, and a high dielectric polymer composite including the same. The polymeric surfactant for high dielectric polymer composites, which includes a head portion having high affinity for a conductive material and a tail portion having high affinity for a polymer resin, forms a passivation layer surrounding the conductive material in the high dielectric polymer composite including the polymeric surfactant, thus ensuring and controlling a high dielectric constant.
Abstract:
A method of fabricating a phase change RAM (PRAM) having a fullerene layer is provided. The method of fabricating the PRAM may include forming a bottom electrode, forming an interlayer dielectric film covering the bottom electrode, and forming a bottom electrode contact hole exposing a portion of the bottom electrode in the interlayer dielectric film, forming a bottom electrode contact plug by filling the bottom electrode contact hole with a plug material, forming a fullerene layer on a region including at least an upper surface of the bottom electrode contact plug and sequentially stacking a phase change layer and an upper electrode on the fullerene layer. The method may further include forming a switching device on a substrate and a bottom electrode connected to the switching device, forming an interlayer dielectric film covering the bottom electrode and forming a bottom electrode contact hole exposing a portion of the bottom electrode in the interlayer dielectric film.
Abstract:
A phase change random access memory (PRAM), and a method of operating the PRAM are provided. In the PRAM comprising a switching element and a storage node connected to the switching element, the storage node comprises a first electrode, a second electrode, a phase change layer between the first electrode and a second electrode, and a heat efficiency improving element formed between the first electrode and the phase change layer. The heat efficiency improving element may be one of a carbon nanotube (CNT) layer, a nanoparticle layer, and a nanodot layer, and the nanoparticle layer may be a fullerene layer.
Abstract:
Provided are a separator having an inorganic protective film and a lithium battery using the separator. The separator has suppressed self discharge and reduced internal shorting.
Abstract:
Provided is a method of preparing a lithium metal anodeincluding forming a current collector on a substrate that includes a release component; depositing a lithium metal on the current collector; and releasing the current collector with the deposited lithium metal from the substrate. The method may produce a lithium metal anode with a clean lithium surface and a current collector with a small thickness. The lithium metal anode may be used to increase the energy density of a battery.
Abstract:
An organic electrolytic solution for a lithium-sulfur battery that can improve discharge capacity and cycle life of the battery, and a lithium-sulfur battery using the organic electrolytic solution are provided. The electrolytic solution includes a lithium salt, an organic solvent, and further a phosphine sulfide-based compound represented by formula (I) below: wherein R1, R2 and R3 are the same or different from each other, and each represents one selected from the group consisting of a substituted or unsubstituted C1-C30 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C1-C30 alkoxy group and a substituted or unsubstituted C8-C30 aralkenyl group. The electrolytic solution including the phosphine sulfide-based compound represented by Formula (I) can suppress production of lithium sulfides so that a reduction in battery capacity can be prevented.
Abstract:
A thermoelectric material including a thermoelectric semiconductor; and a nanosheet disposed in the thermoelectric semiconductor, the nanosheet having a layered structure and a thickness from about 0.1 to about 10 nanometers. Also a thermoelectric element and thermoelectric module including the thermoelectric material.