Abstract:
A method for use in a processor for arbitrating between multiple processes to select wavefronts for execution on a shader core is provided. The processor includes a compute pipeline configured to issue wavefronts to the shader core for execution, a hardware queue descriptor associated with the compute pipeline, and the shader core. The shader core is configured to execute work for the compute pipeline corresponding to a first memory queue descriptor executed using data for the first memory queue descriptor that is loaded into a first hardware queue descriptor. The processor is configured to detect a context switch condition, and, responsive to the context switch condition, perform a context switch operation including loading data for a second memory queue descriptor into the first hardware queue descriptor. The shader core is configured to execute work corresponding to the second memory queue descriptor that is loaded into the first hardware queue descriptor.
Abstract:
Improvements in the graphics processing pipeline that allow multiple pipelines to cooperate to render a single frame are disclosed. Two approaches are provided. In a first approach, world-space pipelines for the different graphics processing pipelines process all work for draw calls received from a central processing unit (CPU). In a second approach, the world-space pipelines divide up the work. Work that is divided is synchronized and redistributed at various points in the world-space pipeline. In either approach, the triangles output by the world-space pipelines are distributed to the screen-space pipelines based on the portions of the render surface overlapped by the triangles. Triangles are rendered by screen-space pipelines associated with the render surface portions overlapped by those triangles.
Abstract:
A system and method for protecting memory instructions against faults are described. The system and method include converting the slave instructions to dummy operations, modifying memory arbiter to issue up to N master and N slave global/shared memory instructions per cycle, sending master memory requests to memory system, using slave requests for error checking, entering master requests to the GM/LM FIFO, storing slave requests in a register, and comparing the entered master requests with the stored slave requests.
Abstract:
A system and method for protecting memory instructions against faults are described. The system and method include converting the slave instructions to dummy operations, modifying memory arbiter to issue up to N master and N slave global/shared memory instructions per cycle, sending master memory requests to memory system, using slave requests for error checking, entering master requests to the GM/LM FIFO, storing slave requests in a register, and comparing the entered master requests with the stored slave requests.
Abstract:
Methods and apparatus are described. A method includes an accelerated processing device running a process. When a maximum time interval during which the process is permitted to run expires before the process completes, the accelerated processing device receives an operating-system-initiated instruction to stop running the process. The accelerated processing device stops the process from running in response to the received operating-system-initiated instruction.
Abstract:
Processing of non-real-time and real-time workloads is performed using discrete pipelines. A first pipeline includes a first shader and one or more fixed function hardware blocks. A second pipeline includes a second shader that is configured to emulate the at least one fixed function hardware block. First and second memory elements store first state information for the first pipeline and second state information for the second pipeline, respectively. A non-real-time workload executing in the first pipeline is preempted at a primitive boundary in response to a real-time workload being dispatched for execution in the second pipeline. The first memory element retains the first state information in response to preemption of the non-real-time workload. The first pipeline is configured to resume processing the subsequent primitive on the basis of the first state information stored in the first memory element.
Abstract:
Disclosed methods, systems, and computer program products embodiments include synchronizing a group of workitems on a processor by storing a respective program counter associated with each of the workitems, selecting at least one first workitem from the group for execution, and executing the selected at least one first workitem on the processor. The selecting is based upon the respective stored program counter associated with the at least one first workitem.
Abstract:
A processing system executes wavefronts at multiple arithmetic logic unit (ALU) pipelines of a single instruction multiple data (SIMD) unit in a single execution cycle. The ALU pipelines each include a number of ALUs that execute instructions on wavefront operands that are collected from vector general process register (VGPR) banks at a cache and output results of the instructions executed on the wavefronts at a buffer. By storing wavefronts supplied by the VGPR banks at the cache, a greater number of wavefronts can be made available to the SIMD unit without increasing the VGPR bandwidth, enabling multiple ALU pipelines to execute instructions during a single execution cycle.
Abstract:
The disclosed circuit can select micro-operations specifically for converting a value in a first number format to a second number format. The circuit can include micro-operations for various conversions between different number formats, including number formats of different floating-point precisions. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
A graphics processing unit (GPU) includes a plurality of programmable processing cores configured to process graphics primitives and corresponding data and a plurality of fixed-function hardware units. The plurality of processing cores and the plurality of fixed-function hardware units are configured to implement a configurable number of virtual pipelines to concurrently process different command flows. Each virtual pipeline includes a configurable number of fragments and an operational state of each virtual pipeline is specified by a different context. The configurable number of virtual pipelines can be modified from a first number to a second number that is different than the first number. An emulation of a fixed-function hardware unit can be instantiated on one or more of the graphics processing cores in response to detection of a bottleneck in a fixed-function hardware unit. One or more of the virtual pipelines can then be reconfigured to utilize the emulation instead of the fixed-function hardware unit.