Abstract:
A compound of formula Ia: The present invention relates to novel indazolyl derivatives, to pharmaceutical compositions comprising such derivatives, to processes for preparing such novel derivatives and to the use of such derivatives as medicaments
Abstract:
System and method for adapting an automatic mechanical transmission (AMT) on a heavy vehicle. The method includes assessing at least one driving characteristic of an operator of the vehicle. Specific examples are detailed below, but in general these will be driving traits that demonstrate the driver's proficiency at executing certain driving tasks. This is taken as a predictor of his or her ability to handle and properly use advanced vehicle features that are beneficial when used properly, but that typically also have a capacity for misuse. Based on the assessment, the operator is classified as being either entitled to enhanced transmission features or not entitled to enhanced transmission features. If the classification is positive, that is the driver is classified as being entitled to enhanced transmission features; at least one enhanced transmission feature is enabled for the operator.
Abstract:
Method for delivering electronic messages to a user including: receiving an electronic message from a sending party, said message containing a destination identity associated with said user, retrieving an IP address currently assigned to a terminal used by said user, based on said destination identity associated with said user, and delivering the electronic message to said terminal with the retrieved IP address as the destination address. A corresponding arrangement is also described.
Abstract:
Novel crystal modifications of (5S)-5-[4-(5-chloro-pyridin-2-yloxy)-piperidine-1-sulfonylmethyl]-5-methyl-imidazolidine-2,4-dione are disclosed together with processes for preparing such modifications, pharmaceutical compositions comprising such a modification, and the use of such a modification in therapy.
Abstract:
A nanotube apparatus is described. The apparatus includes a first electrode having a first edge. An array of nanotubes distributed in a closed path are also included. The closed path surrounds the first electrode and adjacent to the first edge. The closed path is also locally straight. Each of the nanotubes has an end that is free to oscillate. The apparatus also includes a second electrode having a second edge surrounding both the first electrode and the array of nanotubes. Methods are also described.
Abstract:
A method for gear selection during driving of a vehicle in a heavy uphill drive condition is provided, the vehicle including an engine, an automated mechanical transmission, a clutch, a control unit for receiving input signals including signals indicative of vehicle speed, engaged ratio of the transmission, rotational speed of the engine, rotational speed of a input shaft and displacement of a throttle control for engine torque request, and for processing the signals in accordance with programmed logic rules to issue command output signals to the engine, to the transmission and to said clutch. When sensing a heavy uphill drive condition a target gear is determined for the uphill drive condition, the target gear being the highest possible gear with lowest possible gear ratio where the vehicle, in view of at least current circumstances, will be at least theoretically able to hold a constant vehicle speed or accelerate at least slightly, and where further selection of downshifts will be adapted so that no lower gear than the target gear will be selected and engaged.
Abstract:
A method for operating a semi-automatic or automatic manual transmission of a heavy truck when driving at idle speed. The method includes supplying fuel to the engine of the heavy truck at a rate that facilitates engine-idle operation. In another step, the method engages the automatic or semi-automatic transmission in a gear higher than the starting gear of the transmission and permits the truck to operate at a first substantially uniform driving velocity under engine-idle power. Depending upon traffic and environmental requirements which require a slower or higher speed, the driver downshifts or upshifts the semi-automatic or automatic transmission by depressing a control pedal of the truck and then drives the truck at a second substantially uniform driving velocity under engine-idle power. For a downshift, the second substantially uniform driving velocity is less than the first substantially uniform driving velocity. For an upshift, the second substantially uniform driving velocity is greater than the first substantially uniform driving velocity.
Abstract:
A method for identifying a road condition during driving of a vehicle. The vehicle includes an engine with an engine output shaft connected to an automated mechanical transmission via a clutch. A transmission output shaft is connected to at least one driven wheel of the vehicle, and the system further includes a vehicle suspension system with sensors for measuring the vertical movement of wheels of the vehicle relative vehicle bodywork, at least one control unit adapted to receive a variety of input signals and process those signals in accordance with programmed logic rules to issue command output signals to the engine, for torque request, to the transmission for gear shifting and to the clutch. The control unit, when sensing driving conditions, sends signals indicative of a first road condition and is programmed to change gear shifting strategy for the transmission to a gear shifting strategy optimized for the first road condition if present gear shifting strategy is a second gear shifting strategy for a second road condition. One of the road conditions can be off-road.
Abstract:
A vehicle side underrun protection having at least one load-bearing member that extends between the wheels or sets of wheels of the vehicle in the vehicle's longitudinal direction. The member(s) extend basically along the outer contour of the vehicle and serves as side impact protection and/or protection to prevent unprotected road-users ending up under the vehicle. The side underrun protection (1) has at least one longitudinal section (12, 13, 14) suspended in at least two first brackets (2, 3) fixed to the vehicle, along which brackets (2, 3) at least one end of each individual section (12, 13, 14) of the side underrun protection (1) is vertically adjustable from at least a first, active position to a second, inactive position. The invention also relates to a vehicle provided with such a side underrun protection.
Abstract:
A method for optimizing a braking sequence in a vehicle with automatic transmission (3) and gearbox (9) and automatic cruise control, which cruise control controls acceleration and braking to achieve a set speed, taking into account the distance to the vehicle in front. Data simulations are carried out continually of how the vehicle will be driven in the future, for a set of different combinations of engine speed at which a gear change takes place, gear change step and braking sequence, and a braking sequence with associated gear change schedule is selected that will be optimal. The vehicle is equipped with at least two different braking systems, for example service brake and auxiliary brake (48, 6). The system selects to brake primarily with the braking system that has the least tendency to wear.