摘要:
A short length LDPC (Low Density Parity Check) code and modulation adapted for high speed Ethernet applications. In some instances, the short length LDPC code and modulation may be employed within the recommended practices currently being developed by the IEEE 802.3an (10GBASE-T) Task Force. The IEEE 802.3an (10GBASE-T) Task Force has been commissioned to develop and standardize communications protocol adapted particularly for Ethernet operation over 4 wire twisted pair cables. A new LDPC code, some possible embodiments of constellations and the corresponding mappings, as well as possible embodiments of various parity check matrices, H, of the LDPC code are presented herein to provide for better overall performance than other proposed LDPC codes existent in the art of high speed Ethernet applications. Moreover, this proposed LDPC code may be decoded using a communication device having much less complexity than required to decode other proposed LDPC codes existent in this technology space.
摘要:
Construction of Irregular LDPC (Low Density Parity Check) codes using RS (Reed-Solomon) codes or GRS (Generalized Reed-Solomon) codes. As described herein, a wide variety of irregular LDPC codes may be generated using GRS or RS codes. The corresponding LDPC matrix of such an irregular LDPC code may be constructed by performing partial-matrix processing (including decomposition and partial-matrix replacement thereof) of a parity check matrix that corresponds to a GRS-based regular LDPC code. Such an irregular LDPC code may be appropriately designed using these principles thereby generating a code that is suitable for use in wireless communication systems including those that comply with the recommendation practices and standards being developed by the IEEE (Institute of Electrical & Electronics Engineers) 802.11n Task Group (i.e., the Task Group that is working to develop a standard for 802.11 TGn (High Throughput)).
摘要:
Flexible rate matching. No constraints or restrictions are placed on a sending communication device when effectuating rate matching. The receiving communication device is able to accommodate received transmissions of essentially any size (e.g., up to an entire turbo codeword that includes all systematic bits and all parity bits). The receiving communication device employs a relatively small-sized memory to ensure a lower cost, smaller sized communication device (e.g., handset or user equipment such as a personal wireless communication device). Moreover, incremental redundancy is achieved in which successive transmissions need not include repeated information therein (e.g., a second transmission need not include any repeated information from a first transmission). Only when reaching an end of a block of bits or codeword to be transmitted, and when wrap around at the end of such block of bits or codeword occurs, would any repeat of bits be incurred within a later transmission.
摘要:
LDPC (Low Density Parity Check) coded 128 DSQ (Double Square QAM) constellation modulation and its associated labeling. A novel means is introduced by which a constellation may be arranged and mapping in its symbols may be determined to provide for improved performance. One application area in which this may be employed is transmission over twisted pair (typically copper) cabling existent within data centers of various networks. The operation of the IEEE 802.3 Ethernet local area networks currently being used (as well as those currently under development) would benefit greatly by employing the various principles presented herein. When this novel approach of an LDPC coded 128 DSQ constellation modulation combined with TH (Tomlinson-Harashima) preceding is employed within a communication device at a transmitter end of a communication channel (i.e., in a transmitter and/or a transceiver), the overall operation of a communication system may improve significantly when compared to prior techniques.
摘要:
A method for parallel concatenated (Turbo) encoding and decoding. Turbo encoders receive a sequence of input data tuples and encode them. The input sequence may correspond to a sequence of an original data source, or to an already coded data sequence such as provided by a Reed-Solomon encoder. A turbo encoder generally comprises two or more encoders separated by one or more interleavers. The input data tuples may be interleaved using a modulo scheme in which the interleaving is according to some method (such as block or random interleaving) with the added stipulation that the input tuples may be interleaved only to interleaved positions having the same modulo-N (where N is an integer) as they have in the input data sequence. If all the input tuples are encoded by all encoders then output tuples can be chosen sequentially from the encoders and no tuples will be missed. If the input tuples comprise multiple bits, the bits may be interleaved independently to interleaved positions having the same modulo-N and the same bit position. This may improve the robustness of the code. A first encoder may have no interleaver or all encoders may have interleavers, whether the input tuple bits are interleaved independently or not. Modulo type interleaving also allows decoding in parallel.
摘要:
Optimal period rate matching for turbo coding. A means is provided herein by which a nearly optimal (e.g., optimal for one block size and sub-optimal for others) periodic puncturing pattern that depends on a mother code. Any desired rate matching can be achieved using the means and approaches presented herein to ensure an appropriate rate of an encoded block output from a turbo encoder so that the subsequently modulated signal generated there from has the appropriate rate. In addition, some embodiments can also employ shifting for another design level available in accordance with puncturing employed to provide for periodic rate matching. Selectivity can also be employed, such that, a first periodic puncturing pattern can be applied at a first time to ensure a first rate, and a second periodic puncturing pattern can be applied at a second time to ensure a second rate.
摘要:
Information bit puncturing for turbo coding with parameter selectable rate matching tailored to lower Eb/No without degrading BLER (Block Error Rate) performance. A means is presented herein by which puncturing is performed to each of three bit sequences from a turbo encoder (i.e., the systematic bits or information bits within an block to be turbo encoded, the parity bits output from a first constituent encoder, and the parity bits output from a second constituent encoder). The number of bit punctured from each of the parity bits output from the first constituent encoder and the parity bits output from the second constituent encoder need not be the same number of bits. The manner in which puncturing may be performed can be adaptive and/or changeable, in that, first puncturing parameters may be employed at a first time and second puncturing parameters may be employed at a second time, etc.
摘要:
Decoder design adaptable to decode coded signals using min* or max* processing. A very efficient means of min* processing or max* processing may be performed within a communication device to assist in the very complex and cumbersome calculations that are employed when decoding coded signals. The types of coded signals that may be decoded using min* processing or max* processing are varied, and they include LDPC (Low Density Parity Check) coded signals, turbo coded signals, and TTCM (Turbo Trellis Coded Modulation) coded signals, among other coded signal types. Many of the calculations and/or determinations performed within min* processing or max* processing are performed simultaneously and in parallel of one another thereby ensuring very fast operation. In a finite precision digital implementation, when certain calculated bits of min* or max* processing are available, they govern selection of resultants from among multiple calculations and determinations made simultaneously and in parallel.
摘要:
Common circuitry supporting both bit node and check node processing in LDPC (Low Density Parity Check) decoder. A novel approach is presented by which a decoder may use the same circuitry to perform updating of edge messages with respect to bit nodes as well as updating of edge messages with respect to check nodes in the context of decoding LDPC coded signals. In addition, several very efficient architectures are presented to performing check node processing that involves the updating of edge messages with respect to check nodes. One embodiment performs check node processing using min** (min-double-star) processing in conjunction with min**− (min-double-star-minus) processing. Another embodiment performs check node processing using min†† (min-double-dagger) processing in conjunction with min†− (min-dagger-minus) processing. In addition, a single FIFO may be implemented to service a number of macro blocks in a parallel decoding implementation.
摘要:
Turbo decoder employing ARP (almost regular permutation) interleave and inverse thereof as de-interleave. A novel means is presented herein by which a common module can perform both ARP interleaving and ARP de-interleaving during turbo decoding processing. A novel approach is presented that allows a common structure to perform both the interleaving and de-interleaving operations. In some embodiments, certain ARP interleaving parameters are processed to generate ARP de-interleaving parameters. In even other embodiments, certain ARP interleaving parameters are processed to generate an algebraic, closed form ARP de-interleaver function that can be employed during turbo decoding processing. This novel approach obviates the need for extremely large pre-computed look-up-tables. Moreover, this novel approach can accommodate many different interleaves and information block sizes with very little overhead.