Abstract:
A disconnect mechanism for a secondary driveline and method of assembly can be used in an all-wheel drive (AWD) vehicle having a rear driveline module (RDM) for changing drive modes between a two-wheel drive mode and an AWD mode. The disconnect mechanism can include a hydraulically actuated coupling clutch connected to a power take-off unit (PTU) for transferring rotary power from the PTU to the RDM during the AWD mode, a hydraulically actuated first and second rear clutch for rotationally connecting and disconnecting corresponding first and second rear axles drivingly coupled to rear wheels during the AWD mode and two-wheel drive mode, respectively, and a hydraulic actuating assembly including a source of pressurized fluid for actuating the coupling clutch, the first rear clutch, and the second rear clutch, and for synchronizing any speed differential therebetween.
Abstract:
A power transfer case transfers drive torque from the input member to the output member. The power transfer case includes a lubrication system, a hydraulically actuated friction clutch assembly, and a hydraulically actuated range shift assembly. An on-demand electric lube pump can supply a fluid under pressure. An accumulator is selectively supplied with fluid under pressure from the on-demand lube pump. A first valve selectively directs fluid under pressure from the on-demand lube pump to the lubrication system when in the first position and to the accumulator when in a second position. A second valve selectively directs fluid under pressure from the accumulator to the range shift assembly when in a first position, to the friction clutch assembly when in a second position, and isolates the accumulator from the range shift assembly and the friction clutch assembly when in a third position.
Abstract:
A self-adjusting clutch (10) can include an automatic adjustment mechanism (20) for decreasing an axial dimension within a clutch pack (14). The adjustment can compensate for wear of the facing surfaces of interposed members located within the clutch pack (14), resulting from repeated engaging and disengaging under a clutch apply load within the clutch (10). The adjustment mechanism (20) can include a reaction plate (12) normally biased toward the clutch pack (14) by a plurality of first springs (22). The adjustment mechanism (20) can further include a plurality of pawls (24) supported for rotation by the reaction plate (12) and biased by a plurality of second springs (26) toward a locking position with respect to a ring member (36). The plurality of pawls (24) can lock the reaction plate (12) against axial movement in a direction of the clutch apply load during clutch actuation.
Abstract:
A transfer case for a motor vehicle. An input is rotatable about an axis to receive torque, an output is rotatable about the axis to transmit torque, and a planetary gear set is rotatable about the axis and operatively coupled between the input and the output. A shift sleeve circumscribes and is axially slidably carried along the axis, and a shift sleeve lock is automatically engageable with the shift sleeve responsive to the transfer case exceeding a predetermined rotational speed, to prevent axial movement of the shift sleeve above that speed. A related method is also provided.
Abstract:
A transfer case comprising an input shaft and a first output shaft sharing a primary axis of rotation; a second output shaft offset from the first output shaft; a range shifter comprising a first cam constructed and arranged to selectively shift a vehicle to a high-range drive mode, a low range drive mode, or a neutral drive mode; a mode shifter comprising a second cam constructed and arranged to actuate a synchronizer which selectively shifts the vehicle between a two-wheel drive and a four-wheel drive mode; and a dual drive gear interposed between the range shifter and the mode shifter which is rotatable to actuate the first cam and the second cam.
Abstract:
A transfer case (30) and a method of assembly can include a range shifting assembly (60) and a clutch assembly (80) located axially adjacent to one another along a common primary axis. An actuating device (32) can include a concentric gear located coaxially interposed between the range shifting assembly (60) and the clutch assembly (80) for rotation about the common primary axis. The concentric gear (48) can actuate the range shifting assembly (60) during a portion of angular rotation about the common primary axis and can actuate the clutch assembly (80) during a mutually exclusive portion of angular rotation about the common primary axis. The actuating device (32) can include a barrel cam (59), a plurality of springs engageable between the barrel cam (59) and the concentric gear (48), and a shift fork (68) operably engageable with a cam surface groove (57) for guided axial movement to actuate the range shifting assembly (60) between a low-range and high-range drive mode.
Abstract:
A product may include a differential unit, and an electrical machine may be interconnected with the differential unit. The differential unit and the electrical machine may be lubricated by a fluid. A reservoir may be defined above the electrical machine. The reservoir may receive the fluid during operation of the differential unit and may selectively store and release the fluid.
Abstract:
A first ball ramp half includes a first ball ramp plate grounded within a housing against translation that defines first portions of respective one or more ramped ball receiving recesses. A second ball ramp half includes a gear plate supported within the housing for rotation relative to the first ball ramp plate and grounded within the housing against translation relative to the first ball ramp plate that has gear teeth, a second ball ramp plate supported within the housing for rotation relative to the first ball ramp plate that defines complementary second portions of the respective one or more ramped ball receiving recesses, and a joint coupling the gear plate to the second ball ramp plate. The joint imparts rotation of the gear plate to the second ball ramp plate, and is permissive of translation of the second ball ramp plate relative to the first ball ramp plate.
Abstract:
A transfer case (14) of a motor vehicle drivetrain includes a planetary gear set (80) including a ring gear (82) to receive input torque, and a pinion assembly (84) having pinion gears (100) in mesh with the ring gear and a carrier (102) to carry the pinion gears and transmit output torque. A sun gear (86) is in mesh with the pinion gears, is selectively connectable to the carrier and rotatable therewith in a two-wheel drive mode and in a four-wheel-drive high range mode, and is selectively fixable against rotational motion in a four-wheel drive low range mode.