摘要:
A method for fabricating a transistor having self-aligned borderless electrical contacts is disclosed. A gate stack is formed on a silicon region. An off-set spacer is formed surrounding the gate stack. A sacrificial layer that includes a carbon-based film is deposited overlying the silicon region, the gate stack, and the off-set spacer. A pattern is defined in the sacrificial layer to define a contact area for the electrical contact. The pattern exposes at least a portion of the gate stack and source/drain. A dielectric layer is deposited overlying the sacrificial layer that has been patterned and the portion of the gate stack that has been exposed. The sacrificial layer that has been patterned is selectively removed to define the contact area at the height that has been defined. The contact area for the height that has been defined is metalized to form the electrical contact.
摘要:
A high density, asymmetric, butted junction CMOS inverter, formed on an SOI substrate, may include: an asymmetric p-FET that includes a halo implant on only a source side of the p-FET; an asymmetric n-FET that includes a halo implant on only a source side of the n-FET; and a butted junction comprising an area of said SOI substrate where a drain region of the asymmetric n-FET and a drain region of the asymmetric p-FET are in direct physical contact. Asymmetric halo implants may be formed by a sequential process of covering a first FET of the CMOS inverter with an ion-absorbing structure and applying angled ion radiation to only the source side of the second FET, removing the ion-absorbing structure, covering the first FET with a second ion-absorbing structure, and applying angled ion radiation to only the source side of the second FET. A layout display of CMOS integrated circuit may require one ground rule for the high density, asymmetric butted junction CMOS inverter and another ground rule for other CMOS circuits.
摘要:
A multi-gate field effect transistor apparatus and method for making same. The apparatus includes a source terminal, a drain terminal, and a gate terminal which includes a tapered-gate profile. A method for designing a multi-gate field effect transistor includes arranging a source terminal, a drain terminal and a gate terminal with a tapered-gate profile to create a wider gate width on a bottom of a fin.
摘要:
Multiple threshold voltage (Vt) field-effect transistor (FET) devices and techniques for the fabrication thereof are provided. In one aspect, a FET device is provided including a source region; a drain region; at least one channel interconnecting the source and drain regions; and a gate, surrounding at least a portion of the channel, configured to have multiple threshold voltages due to the selective placement of at least one band edge metal throughout the gate.
摘要:
A three-dimensional integrated circuit includes a semiconductor device, an insulator formed on the semiconductor device, an interconnect formed in the insulator, and a graphene device formed on the insulator.
摘要:
Techniques are provided for gate work function engineering in FIN FET devices using a work function setting material an amount of which is provided proportional to fin pitch. In one aspect, a method of fabricating a FIN FET device includes the following steps. A SOI wafer having a SOI layer over a BOX is provided. An oxide layer is formed over the SOI layer. A plurality of fins is patterned in the SOI layer and the oxide layer. An interfacial oxide is formed on the fins. A conformal gate dielectric layer, a conformal gate metal layer and a conformal work function setting material layer are deposited on the fins. A volume of the conformal gate metal layer and a volume of the conformal work function setting material layer deposited over the fins is proportional to a pitch of the fins. A FIN FET device is also provided.
摘要:
A method of fabricating a nanowire FET device includes the following steps. A SOI wafer is provided having a SOI layer over a BOX. Nanowires and pads are etched in the SOI layer. The nanowires are suspended over the BOX. An interfacial oxide is formed surrounding each of the nanowires. A conformal gate dielectric is deposited on the interfacial oxide. A conformal first gate material is deposited on the conformal gate dielectric. A work function setting material is deposited on the conformal first gate material. A second gate material is deposited on the work function setting material to form at least one gate stack over the nanowires. A volume of the conformal first gate material and/or a volume of the work function setting material in the gate stack are/is proportional to a pitch of the nanowires.
摘要:
In one aspect, a CMOS device is provided. The CMOS device includes a SOI wafer having a SOI layer over a BOX; one or more active areas formed in the SOI layer in which one or more FET devices are formed, each of the FET devices having an interfacial oxide on the SOI layer and a gate stack on the interfacial oxide layer, the gate stack having (i) a conformal gate dielectric layer present on a top and sides of the gate stack, (ii) a conformal gate metal layer lining the gate dielectric layer, and (iii) a conformal workfunction setting metal layer lining the conformal gate metal layer. A volume of the conformal gate metal layer and/or a volume of the conformal workfunction setting metal layer present in the gate stack are/is proportional to a length of the gate stack.
摘要:
A semiconductor nanowire is formed integrally with a wraparound semiconductor portion that contacts sidewalls of a conductive cap structure located at an upper portion of a deep trench and contacting an inner electrode of a deep trench capacitor. The semiconductor nanowire is suspended from above a buried insulator layer. A gate dielectric layer is formed on the surfaces of the patterned semiconductor material structure including the semiconductor nanowire and the wraparound semiconductor portion. A wraparound gate electrode portion is formed around a center portion of the semiconductor nanowire and gate spacers are formed. Physically exposed portions of the patterned semiconductor material structure are removed, and selective epitaxy and metallization are performed to connect a source-side end of the semiconductor nanowire to the conductive cap structure.
摘要:
A three dimensional integrated circuit includes a silicon substrate, a first source region disposed on the substrate, a first drain region disposed on the substrate, a first gate stack portion disposed on the substrate, a first dielectric layer disposed on the first source region, the first drain region, the first gate stack portion, and the substrate, a second dielectric layer formed on the first dielectric layer, a second source region disposed on the second dielectric layer, a second drain region disposed on the second dielectric layer, and a second gate stack portion disposed on the second dielectric layer, the second gate stack portion including a graphene layer.