摘要:
A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate including a metal oxide device. The metal oxide device includes first and second doped regions disposed within the substrate and interfacing in a channel region. The first and second doped regions are doped with a first type dopant. The first doped region has a different concentration of dopant than the second doped region. The metal oxide device further includes a gate structure traversing the channel region and the interface of the first and second doped regions and separating source and drain regions. The source region is formed within the first doped region and the drain region is formed within the second doped region. The source and drain regions are doped with a second type dopant. The second type dopant is opposite of the first type dopant.
摘要:
An embedded flash cell structure comprising a structure, a first floating gate having an exposed side wall over the structure, a second floating gate having an exposed side wall over the structure and spaced apart from the first floating gate, a first pair of spacers over the respective first floating gate and the second floating gate, a second pair of spacers at least over the respective exposed side walls of the first and second floating gates, a source area in the structure between the second pair of spacers, a plug over the source implant, and first and second control gates outboard of the first pair of spacers and exposing outboard portions of the structure and respective drain areas in the exposed outboard portions of the structure is provided. A method of forming the embedded flash cell structure is also provided.
摘要:
A new method to form a split gate for a flash device in the manufacture of an integrated circuit device is achieved. The method comprises providing a substrate. A film is deposited overlying the substrate. The film comprises a second dielectric layer overlying a first dielectric layer with an electronic-trapping layer therebetween. A masking layer is deposited overlying the film. The masking layer and the film are patterned to expose a part of the substrate and to form a floating gate electrode comprising the electronic-trapping layer. An oxide layer is grown overlying the exposed part of the substrate. The masking layer is removed. A conductive layer is deposited overlying the oxide layer and the second dielectric layer. The conductive layer and the oxide layer are patterned to complete a control gate electrode comprising the conductive layer. The control gate electrode has a first part overlying the floating gate electrode and a second part not overlying the floating gate electrode.
摘要:
A non-volatile memory cell and a method of manufacturing the same are provided. The non-volatile memory cell includes a semiconductor substrate, a floating gate over the semiconductor substrate, a first, a second, and a third capacitor each having a first plate and sharing a common floating gate as a second plate. The non-volatile memory cell further includes a transistor connected in series with the first capacitor. The gate electrode of the transistor is connected to a wordline of a memory array, and a source/drain region is connected to a bitline.
摘要:
An embedded flash cell structure comprising a structure, a first floating gate having an exposed side wall over the structure, a second floating gate having an exposed side wall over the structure and spaced apart from the first floating gate, a first pair of spacers over the respective first floating gate and the second floating gate, a second pair of spacers at least over the respective exposed side walls of the first and second floating gates, a source area in the structure between the second pair of spacers, a plug over the source implant, and first and second control gates outboard of the first pair of spacers and exposing outboard portions of the structure and respective drain areas in the exposed outboard portions of the structure is provided. A method of forming the embedded flash cell structure is also provided.
摘要:
A memory cell including a substrate having a source region; a floating gate structure disposed over the substrate and associated with the source region; and a source coupling enhancement structure covering an exposed portion of the floating gate structure and extending to the source region. The flash memory cell can be fabricated in a method including the steps of forming the floating gate structure over a substrate; forming the source coupling enhancement structure on an exposed portion of the floating gate structure; and forming the source region in the substrate.
摘要:
A method of etch polysilicon adjacent to a recessed STI structure feature is described. A substrate is provided with a dielectric layer thereon and a polysilicon layer on the dielectric layer. A shallow trench is formed that extends through the polysilicon and dielectric layers into the substrate. An insulating material is used to fill the trench and is then recessed in the trench below the surface of the substrate by polishing and etching steps. A conformal buffer layer is deposited which covers the polysilicon and sidewalls of the trench above the recessed insulating layer. The buffer layer is etched back to expose the insulating layer and the polysilicon is removed by a plasma etch. A spacer comprised of a portion of the buffer layer protects the substrate during the polysilicon etch to prevent unwanted trenches from being formed adjacent to the STI structure, thereby increasing the etch process window.
摘要:
A device and a method are provided for manufacture of that semiconductor memory device on a silicon semiconductor substrate with a vertical channel. A dielectric layer pattern with openings through it is formed. Trenches are formed in the surface of the semiconductor substrate. The trenches have sidewalls. A spacer layer is formed on the surface of the device. The spacer layer is shaped to form spacers in the trenches on the sidewalls. Source/drain regions are formed by ion implanting ions to deposit dopant into the substrate. The device is annealed to form source/drain regions in the substrate. A dielectric layer is formed over the device. A conductive word-line is formed and patterned over the dielectric layer.
摘要:
A method of manufacture of a Mask ROM on a semiconductor substrate comprises formation of a first plurality of conductor lines in a first array. A dielectric layer is formed upon the device with a matrix of openings therein in line with the first array. The openings expose the surface of the first conductor lines. Semiconductor diodes are formed in the matrix of openings in contact with the first conductor lines. A second plurality of conductor lines are formed on the surface of the dielectric layer in a second array of conductor lines orthogonal to the first plurality of conductor lines in the first array. A second plurality of conductor lines is aligned with the matrix and is in contact with the upper ends of the semiconductor diodes.
摘要:
A method of designing a charge trapping memory array including designing a floating gate memory array layout. The floating gate memory layout includes a first type of transistors, electrical connections between memory cells of the floating gate memory array layout, a first input/output (I/O) interface, a first type of charge pump, and an I/O block. The method further includes modifying the floating gate memory array layout, using a processor, to replace the first type of transistors with a second type of transistors different than the first type of transistors. The method further includes determining an operating voltage difference between the I/O block and the second type of transistors. The method further includes modifying the floating gate memory array layout, using the processor, to modify the first charge pump based on the determined operating voltage difference.