Abstract:
In one embodiment, a sense amplifier includes: a differential amplifier adapted to amplify a voltage difference between a pair of bit lines; and a self-bias generation circuit adapted to reduce an offset bias in the differential amplifier with regard to the amplification of the voltage difference between the pair of bit lines.
Abstract:
The present invention relates to a system and method adapted to increase memory cell and memory architecture design yield. The present invention includes memory architecture having a decoder and a multi-bank memory. The decoder is adapted to decode addresses. The multi-bank memory interacts with the decoder, wherein the multi-bank memory includes at least one output data bit adapted to complete a word for a failing bank in the multi-bank memory.
Abstract:
In one embodiment, a sense amplifier includes: a differential amplifier adapted to amplify a voltage difference between a pair of bit lines; and a self-bias generation circuit adapted to reduce an offset bias in the differential amplifier with regard to the amplification of the voltage difference between the pair of bit lines.
Abstract:
In one embodiment, NMOS transistors have their source coupled to a common source node such that the NMOS transistors conduct a leakage current if the common source node is grounded. To reduce this leakage current, the common source node is raised in potential. Similarly, PMOS transistors have their source coupled to a common source node such that the PMOS transistors conduct a leakage current if the common source node is charged to a power supply voltage VDD. To reduce this leakage current, the common source node is lowered in potential.
Abstract:
The present invention relates to a system and method for increasing the manufacturing yield of a plurality of memory cells used in cell arrays. A programmable fuse, having both hardware and software elements, is used with the plurality of memory cells to indicate that at least one memory cell is unusable and should be shifted out of operation. The software programmable element includes a programmable register adapted to shift in an appropriate value indicating that at least one of the memory cells is flawed. The hardware element includes a fuse gated with the programmable register. Shifting is indicated either by software programmable fuse or hard fuse. Soft fuse registers may be chained together forming a shift register.
Abstract:
A hierarchical memory structure having memory cells, and sense amplifiers and decoders coupled with the memory cells to form first tier memory module, and subsequent tiers being formed by having (n−1)-tier memory modules, which are coupled with (n)-tier sense amplifiers and (n)-tier decoders. Also provided are a single-ended sense amplifier having sample-and-hold reference, and a charge-share limited-swing-driver sense amplifier; an asynchronously-resettable decoder; a wordline decoder having row redundancy; a redundancy device having redundant memory cells operated by a redundancy controller; a diffusion replica delay circuit; a high-precision delay measurement circuit; and a data transfer bus circuit imposing a limited voltage swing on a data bus. Methods are provided for a write-after-read operation without an interposed precharge cycle, and write-after-write operation with an interposed precharge cycle are provided, either operation being completed in less than one memory access cycle.
Abstract:
A digital memory system (30) includes a memory cell (52), a bit line (50), a transfer gate (60) a reference voltage generator (40), a sense amplifier (70) and a control circuit (80). The control circuit precharges the bit line to a bit line precharge voltage, which is sampled and stored. A corresponding reference voltage is generated after the bit line is isolated. The bit line and reference voltage are coupled to the sense amplifier so that a voltage is received based on charge stored in the memory cell. The sense amplifier then is isolated from the bit line and reference voltage and the sense amplifier is energized so that an output voltage is derived from the charge and reference voltage.
Abstract:
An imaging device includes a plurality of photo-diodes arranged in a plurality of columns on a single Complementary Metal Oxide Semiconductor (CMOS) substrate. A plurality of analog-to-digital converters (ADCs) corresponding to the plurality of columns of photo-diodes are arranged on the substrate, with each ADC having an input coupled to outputs of the photo-diodes in the corresponding column. Parallel processing of the data streams produced by the multiple ADCs improves the bandwidth of the imaging device. The ADCs have one or more capacitors based on a reference capacitor that are configured so that the corresponding capacitors for different ADCs are substantially equal across the CMOS substrate. As such, image variation and streaking across the columns of photo-diodes is minimized or eliminated. The reference capacitors of the ADCs are above a minimum capacitance value, determined by a maximum variation of the reference capacitors across the substrate.
Abstract:
An imaging device includes a plurality of photo-diodes that operate as optical pixels arranged in a plurality of columns on a single CMOS substrate. The outputs of the multiple pixel sensors, or photo-diodes, are examined to determine if a one pixel, or a region of pixels are in saturation. If so, then the pixel gain is adjusted to correct or compensate for the image distortion in the region. For example, the gain of the charging amplifier or operational amplifier can be adjusted to correct for saturation. This can be done in real-time since hardware is being tuned for the correction instead of software.
Abstract:
The present invention includes operational amplifier for an active pixel sensor that detects optical energy and generates an analog output that is proportional to the optical energy. The active pixel sensor operates in a number of different modes including: signal integration mode, the reset integration mode, column reset mode, and column signal readout mode. Each mode causes the operational amplifier to see a different output load. Accordingly, the operational amplifier includes a variable feedback circuit to provide compensation that provides sufficient amplifier stability for each operating mode of the active pixel sensor. For instance, the operational amplifier includes a bank of feedback capacitors, one or more of which are selected based on the operating mode to provide sufficient phase margin for stability, but also considering gain and bandwidth requirements of the operating mode.