Abstract:
A decoder for decoding an address having a plurality of bits ranging from a first address bit a1 to a last address bit aN, each address bit being either true or false is provided that includes a pre-charge circuit adapted to pre-charge a dynamic NOR node and a dynamic OR node and then allow the pre-charged dynamic NOR node and pre-charged dynamic OR node to float; a plurality of switches coupled between the dynamic NOR node and ground, each switch corresponding uniquely to the address bits such that the switches range from a first switch corresponding to a1 to an nth switch corresponding to aN, wherein any switch corresponding to a true address bit is configured to turn on only if its corresponding address bit is false, and wherein any switch corresponding to a false address bit is configured to turn on only if its corresponding address bit is true.
Abstract:
The present invention relates to a system and method for processing the read and write operations in a memory architecture. The system processing the read and write operations includes at least one local memory block and a synchronously controlled global controller coupled to the local memory block and adapted to extend the high portion of a clock pulse. The method for processing the read and write operations includes skewing a clock pulse using at least one word line interfacing with the global controller.
Abstract:
A decoder for decoding an address having a plurality of bits ranging from a first address bit a1 to a last address bit aN, each address bit being either true or false is provided that includes a pre-charge circuit adapted to pre-charge a dynamic NOR node and a dynamic OR node and then allow the pre-charged dynamic NOR node and pre-charged dynamic OR node to float; a plurality of switches coupled between the dynamic NOR node and ground, each switch corresponding uniquely to the address bits such that the switches range from a first switch corresponding to a1 to an nth switch corresponding to aN, wherein any switch corresponding to a true address bit is configured to turn on only if its corresponding address bit is false, and wherein any switch corresponding to a false address bit is configured to turn on only if its corresponding address bit is true; a (n+1)th switch coupling the dynamic OR node to ground, the (n+1)th switch being controlled such that it turns on if the dynamic OR node is charged, whereby the pre-charged dynamic OR node discharges if the dynamic OR node remains charged; an odd plurality of inverters coupled in series with the dynamic OR node; and a word line driven by the odd plurality of inverters.
Abstract:
In one embodiment, a multi-port SRAM is provided that comprises: a single input port and output port 6-T SRAM; and a multi-port control block circuit that includes: a plurality of input registers corresponding to a plurality of input ports to register corresponding input signals; an input multiplexer to select from the input registers to provide a selected input signal to the 6-T SRAM's single input port; a plurality of output registers corresponding to a plurality of output ports to register corresponding output signals; and an output de-multiplexer to select from the output registers to provide an output signal from the 6-T SRAM's single output port to the selected output register.
Abstract:
In one embodiment, a hybrid DRAM is provided that includes: a sense amplifier including a differential amplifier and regenerative latch, wherein the differential amplifier and regenerative latch are constructed using core transistors that have a relatively thin gate oxide; and a plurality of memory cells coupled to the sense amplifier through a pair of bit lines, wherein each memory cell includes an access transistor coupled to a storage cell, the access transistor having a relatively thick gate oxide, whereby the storage capacitor is capable of being charged to a VIO power supply voltage that is greater than a VDD power supply voltage for the core transistors.
Abstract:
The present invention relates to a system and method for providing redundancy in a hierarchically memory, by replacing small blocks in such memory. The present invention provides such redundancy (i.e., replaces such small blocks) by either shifting predecoded lines or using a modified shifting predecoder circuit in the local predecoder block. In one embodiment, the hierarchal memory structure includes at least one active predecoder adapted to be shifted out of use; and at least one redundant predecoder adapted to be shifted in to use.
Abstract:
In one embodiment, a sense amplifier for sensing a binary state of a memory cell coupled to a bit line and a complementary bit line and for writing a binary state into the memory cell is provided. The sense amplifier includes: a first pair of switches including a first switch coupled to a node on the bit line and a second switch coupled to a node on the complementary bit line; a signal detector having a first input terminal coupled to the first switch and a second input terminal coupled to the second switch, the signal detector configured to sense voltages on the bit line and the complementary bit line through the first pair of switches during a read operation; a second pair of switches, wherein a first switch in the second pair couples between the node on the bit line and ground and is responsive to a data signal to be written to the memory cell and a second switch couples between the node on the complementary bit line and ground and is responsive to a complementary data signal to be written to the memory cell, wherein if either the data signal or the complementary data signal is true, a corresponding bit line is grounded so as to force the binary state of memory cell into an appropriate value during a write operation; and wherein the first pair of switches are controlled such that they turn on during a read operation while the signal detector determines the binary state of the memory cell, the first pair of switches being off during the write operation whereby a capacitance presented to the bit line and the complementary bit line by the sense amplifier is lower during the write operation than during the read operation.
Abstract:
The present invention relates to a system and method for increasing the manufacturing yield of a plurality of memory cells used in cell arrays. A programmable fuse, having both hardware and software elements, is used with the plurality of memory cells to indicate that at least one memory cell is unusable and should be shifted out of operation. The software programmable element includes a programmable register adapted to shift in an appropriate value indicating that at least one of the memory cells is flawed. The hardware element includes a fuse gated with the programmable register. Shifting is indicated either by software programmable fuse or hard fuse. Soft fuse registers may be chained together forming a shift register.
Abstract:
In one embodiment, an exclusive-OR (XOR) calculation circuit configured to XOR a plurality of N input signals ranging from a first signal to an Nth signal is provided. The calculation circuit includes: a plurality of logic circuits arranged from a first logic circuit to a last logic circuit, wherein each logic circuit is configured to receive two logical input signals and the complement of the two logical input signals and to provide an XOR output signal and an XNOR output signal, wherein the XOR output signal represents the XOR of its two input signals and the XNOR output signal represents an exclusive-NOT-OR (XNOR) of its two input signals, and wherein the first logic circuit receives two of the N input signals as its logical input signals, a second logic circuit receives another one of the N input signals and an XOR output signal from the first logic circuit as its logical input signals, and so on such that the last logic circuit receives a remaining one of the N input signals and an XOR output signal from a next-to-last logic circuit as its logical input signals.
Abstract:
In one embodiment, NMOS transistors have their source coupled to a common source node such that the NMOS transistors conduct a leakage current if the common source node is grounded. To reduce this leakage current, the common source node is raised in potential. Similarly, PMOS transistors have their source coupled to a common source node such that the PMOS transistors conduct a leakage current if the common source node is charged to a power supply voltage VDD. To reduce this leakage current, the common source node is lowered in potential.