Abstract:
A method for displaying a captured image on a display device. A real image is captured by a vision-based imaging device. A virtual image is generated from the captured real image based on a mapping by a processor. The mapping utilizes a virtual camera model with a non-planar imaging surface. Projecting the virtual image formed on the non-planar image surface of the virtual camera model to the display device.
Abstract:
A method for displaying a captured image on a display device. A scene is captured by at least one vision-based imaging device. A virtual image of the captured scene is generated by a processor using a camera model. A view synthesis technique is applied to the captured image by the processor for generating a de-warped virtual image. A dynamic rearview mirror display mode is actuated for enabling a viewing mode of the de-warped image on the rearview mirror display device. The de-warped image is displayed in the enabled viewing mode on the rearview mirror display device.
Abstract:
A vehicle imaging system includes an image capture device capturing an image exterior of a vehicle. The captured image includes at least a portion of a sky scene. A processor generates a virtual image of a virtual sky scene from the portion of the sky scene captured by the image capture device. The processor determines a brightness of the virtual sky scene from the virtual image. The processor dynamically adjusts a brightness of the captured image based the determined brightness of the virtual image. A rear view mirror display device displays the adjusted captured image.
Abstract:
A scan matching and radar pose estimator for determining a final radar pose for an autonomous vehicle includes an automated driving controller that is instructed to determine a hyper-local submap based on a predefined number of consecutive aggregated filtered data point cloud scans and associated pose estimates. The automated driving controller determines an initial estimated pose by aligning a latest aggregated filtered data point cloud scan with the most recent hyper-local submap based on an iterative closest point (ICP) alignment algorithm. The automated driving controller determines a pose graph based on the most recent hyper-local submap and neighboring radar point cloud scans, and executes a multi-view non-linear ICP algorithm to adjust initial estimated poses corresponding to the neighboring radar point cloud scans in a moving window fashion to determine a locally adjusted pose.
Abstract:
Systems and methods for a vehicle are provided. In one embodiment, a method includes: receiving image data defining a plurality of images associated with an environment of the vehicle; receiving vehicle data indicating a velocity of the vehicle, wherein the vehicle data is associated with the image data; determining, by a processor, feature points within at least one image based on the vehicle data and a three dimensional projection method; selecting, by the processor, a subset of the feature points as ground points; determining, by the processor, a ground plane based on the subset of feature points; determining, by the processor, a ground normal vector from the ground plane; determining, by the processor, a camera to ground alignment value based on the ground normal vector; and generating, by the processor, second image data based on the camera to ground alignment value.
Abstract:
A multimedia system is provided for a scalable infotainment system of a motor vehicle. The scalable infotainment system includes a camera, which is releasably attached to the motor vehicle and supports camera software components for generating a media signal. The multimedia system includes a media player and a computer attached to the motor vehicle. The computer has a processor and a non-transitory computer readable storage medium, which stores player software components including multiple streaming protocols used by the media player to play a media stream. The processor is programmed to transmit to the camera a player setup signal including data associated with the player software components. The processor is further programmed to receive from the camera a media signal associated with a media stream generated by the camera by using a common one of the streaming protocols supported by the camera and the media player.
Abstract:
A multimedia system is provided for a scalable infotainment system of a motor vehicle. The scalable infotainment system includes a camera, which is releasably attached to the motor vehicle and supports camera software components for generating a media signal. The multimedia system includes a media player and a computer attached to the motor vehicle. The computer has a processor and a non-transitory computer readable storage medium, which stores player software components including multiple streaming protocols used by the media player to play a media stream. The processor is programmed to transmit to the camera a player setup signal including data associated with the player software components. The processor is further programmed to receive from the camera a media signal associated with a media stream generated by the camera by using a common one of the streaming protocols supported by the camera and the media player.
Abstract:
Systems and methods are provided for generating alignment parameters for processing data associated with a vehicle. In one embodiment, a method includes: receiving image data associated with an environment of the vehicle; receiving lidar data associated with the environment of the vehicle; processing, by a processor, the image data to determine data points associated with at least one pole identified within image data; processing, by the processor, the lidar data to determine data points associated with at least one pole identified within the lidar data; selectively storing the data points as data point pairs in a data buffer; iteratively processing, by the processor, the data point pairs with a plurality of perturbations to determine a transformation matrix; generating, by the processor, alignment data based on the transformation matrix; and processing future data based on the alignment parameters.
Abstract:
A system in a vehicle includes a lidar system to obtain lidar data in a lidar coordinate system, and processing circuitry to obtain the lidar data and localization data. The localization data indicates a location and orientation of the vehicle. The processing circuitry automatically determines an alignment state resulting in a lidar-to-vehicle transformation matrix that projects the lidar data from the lidar coordinate system to a vehicle coordinate system to provide lidar-to-vehicle data. The alignment state is determined using the localization data.
Abstract:
A system in a vehicle includes a lidar system to transmit incident light and receive reflections from one or more objects as a point cloud of points. The system also includes processing circuitry to identify planar points and to identify edge points of the point cloud. Each set of planar points forms a linear pattern and each edge point is between two sets of planar points, and the processing circuitry identifies each point of the points of the point cloud as being within a virtual beam among a set of virtual beams. Each virtual beam of the set of virtual beams representing a horizontal band of the point cloud.