摘要:
An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the capacitor. A ground path electrically extends between the ground end metallization of the chip capacitor and the ferrule. The ground path comprises a conductive pin electrically and mechanically connected to the ferrule by a third gold braze. The ground path comprises an internal ground plate disposed within the circuit board substrate, and the internal ground plate is electrically connected to both the conductive pin and the ground end metallization of the chip capacitor. An active path electrically extends between the active end metallization of the chip capacitor and the lead wire.
摘要:
A multilayer helical wave filter having a primary resonance at a selected RF diagnostic or therapeutic frequency or frequency range, includes an elongated conductor forming at least a portion of an implantable medical lead. The elongated conductor includes a first helically wound segment having at least one planar surface, a first end and a second end, which forms a first inductive component, and a second helically wound segment having at least one planar surface, a first end and a second end, which forms a second inductive element. The first and second helically wound segments are wound in the same longitudinal direction and share a common longitudinal axis. Planar surfaces of the helically wound segments face one another, and a dielectric material is disposed between the facing planar surfaces of the helically wound segments and between adjacent coils of the helically wound segments, thereby forming a capacitance.
摘要:
A hermetically sealed feedthrough filter assembly is attachable to an active implantable medical device and includes an insulator substrate assembly and a feedthrough filter capacitor disposed on a device side. A conductive leadwire has a proximal leadwire end extending to a distal leadwire end, wherein the proximal leadwire end is connectable to electronics internal to the AIMD. The distal leadwire end is disposed at least partially through a first passageway of the feedthrough filter capacitor and is in contact with, adjacent to or near a device side conductive fill. A first electrically conductive material makes a three-way electrically connection that electrically connects the device side conductive fill to an internal metallization of the feedthrough filter capacitor and to the distal leadwire end. A second electrically conductive material electrically connects an external metallization of the feedthrough filter capacitor to a ferrule or an AIMD housing.
摘要:
A shielded three-terminal flat-through EMI/energy dissipating filter includes an active electrode plate through which a circuit current passes between a first terminal and a second terminal, a first shield plate on a first side of the active electrode plate, and a second shield plate on a second side of the active electrode plate opposite the first shield plate. The first and second shield plates are conductively coupled to a grounded third terminal. In preferred embodiments, the active electrode plate and the shield plates are at least partially disposed with a hybrid flat-through substrate that may include a flex cable section, a rigid cable section, or both.
摘要:
A multilayer helical wave filter having a primary resonance at a selected RF diagnostic or therapeutic frequency or frequency range, includes an elongated conductor forming at least a portion of an implantable medical lead. The elongated conductor includes a first helically wound segment having at least one planar surface, a first end and a second end, which forms a first inductive component, and a second helically wound segment having at least one planar surface, a first end and a second end, which forms a second inductive element. The first and second helically wound segments are wound in the same longitudinal direction and share a common longitudinal axis. Planar surfaces of the helically wound segments face one another, and a dielectric material is disposed between the facing planar surfaces of the helically wound segments and between adjacent coils of the helically wound segments, thereby forming a capacitance.
摘要:
A header block is configured to be attachable to an implantable medical device. The header block includes a header block body and a connection port disposed in the header block body configured to receive an implantable lead. A conductor is disposed in the header block body electrically coupled to the connection port at a first end and connectable at a second end to the implantable medical device. An impeding device is electrically coupled in series along the length of the conductor and disposed within the header block body. The impeding device is configured to raise the high-frequency impedance of the conductor. The impeding device may include a bandstop filter or an L-C tank circuit.
摘要:
A feedthrough for an AIMD includes a ferrule with an insulator hermetically sealing a ferrule opening, both cooperatively separating a body fluid side from a device side. A circuit board disposed adjacent to the insulator device side has a ground plate or ground trace electrically connected to a circuit board ground conductive pathway disposed in a circuit board ground via hole. An anisotropic conductive layer disposed between the circuit board and the insulator device side has an electrically insulative matrix supporting a plurality of electrically conductive particles. The anisotropic conductive layer has a first thickness where at least one first electrically conductive particle is longitudinally aligned and in electrical contact with the ferrule and the circuit board ground conductive pathway electrically connected to the at least one circuit board ground plate or ground trace. The anisotropic conductive layer has a second, greater thickness where the ferrule and the circuit board ground conductive pathway are not longitudinally aligned, and no electrically conductive particles are in electrical contact with the ferrule and the circuit board ground conductive pathway.
摘要:
A hermetically sealed feedthrough assembly for an active implantable medical device having an oxide-resistant electrical attachment for connection to an EMI filter, an EMI filter circuit board, an AIMD circuit board, or AIMD electronics. The oxide-resistant electrical attachment, including an oxide-resistant coating layer that is disposed on the device side surface of the hermetic seal ferrule over which an optional ECA stripe may be provided. The optional ECA stripe may comprise one of a thermal-setting electrically conductive adhesive, an electrically conductive polymer, an electrically conductive epoxy, an electrically conductive silicone, an electrically conductive polyamide, or an electrically conductive polyimide, such as those manufactured by Ablestick Corporation. The oxide-free coating layer may comprise one of gold, platinum, palladium, silver, iridium, rhenium, rhodium, tantalum, tungsten, niobium, zirconium, vanadium, and combinations or alloys thereof. As used herein, the oxide-free coating layer is not limiting and as will be taught, in addition to sputtering, there are many other methods of applying a proud oxide-free surface on either an AIMD ferrule or an AIMD housing.
摘要:
A circuit board for an active implantable medical device (AIMD) has a circuit board land connected to at least one electrical circuit. A hermetic feedthrough terminal pin connector for the AIMD includes an electrical insulator hermetically sealed to an opening of an electrically conductive ferrule. A terminal pin of the feedthrough extends outwardly beyond the insulator. A terminal pin connector has an electrically conductive connector housing that is connected to the circuit board land by an electrical connection material. At least one electrically conductive prong supported by the connector housing contacts and compresses against the feedthrough terminal pin to thereby make a removable electrical connection between the circuit board and the terminal pin. An insulative material loaded with electrically insulative nanoparticles coats at least a portion of the sidewall of the connector housing and the electrical connection material connecting the connector housing to the circuit board land.
摘要:
A feedthrough for an AIMD is described. The feedthrough includes an electrically conductive ferrule having a ferrule sidewall defining a ferrule opening. The ferrule sidewall has a height. At least one recessed pocket has a depth extending part-way through the height of the ferrule. An oxide-resistant pocket-pad is nested in the recessed pocket. An electrical connection material is supported on the pocket-pad for making an oxide-resistant electrical connection to the ferrule. An insulator is hermetically sealed to the ferrule in the ferrule opening. At least one active via hole extends through the insulator with an active conductive pathway residing in and hermetically sealed to the insulator in the active via hole.