Abstract:
Embodiments provided herein describe anti-glare coatings and panels and methods for forming anti-glare coatings and panels. A transparent substrate is provided. A polymer is sputtered onto the transparent substrate to form an anti-glare coating on the transparent substrate.
Abstract:
Disclosed herein are systems, methods, and apparatus for forming low emissivity panels that may include a first substrate. The first substrate may have a first side and a second side. The low emissivity panels may also include a magnetic fluid layer deposited over the first side of the first substrate and a reflective layer deposited over the second side of the first substrate. The magnetic fluid layer may include magnetic particles. The reflective layer may include a conductive material configured to conduct an electrical current and generate a magnetic field. The magnetic field may be configured to change an orientation of the magnetic particles in the magnetic fluid layer and a transmissivity of the magnetic fluid layer within a visible spectrum. The low emissivity panels may also include a first bus and a second bus deposited along opposite edges of the reflective layer and electrically connected to the reflective layer.
Abstract:
A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
Abstract:
Provided is High Productivity Combinatorial (HPC) testing methodology of semiconductor substrates, each including multiple site isolated regions. The site isolated regions are used for testing different compositions and/or structures of barrier layers disposed over silver reflectors. The tested barrier layers may include all or at least two of nickel, chromium, titanium, and aluminum. In some embodiments, the barrier layers include oxygen. This combination allows using relative thin barrier layers (e.g., 5-30 Angstroms thick) that have high transparency yet provide sufficient protection to the silver reflector. The amount of nickel in a barrier layer may be 5-10% by weight, chromium −25-30%, titanium and aluminum −30%-35% each. The barrier layer may be co-sputtered in a reactive or inert-environment using one or more targets that include all four metals. An article may include multiple silver reflectors, each having its own barrier layer.
Abstract:
A method for making low emissivity panels, comprising cooling the article before or during sputter depositing a coating layer, such as a seed layer or an infrared reflective layer. The cooling process can improve the quality of the infrared reflective layer, which can lead to better transmittance in visible regime, block more heat transfer from the low emissivity panels, and potentially can reduce the requirements for other layers, so that the overall performance, such as durability, could be improved.
Abstract:
Methods for depositing layers by PVD, wherein the PVD process parameters are selected to impart porosity in the layer are described. The porous layers are then exposed to a vapor or liquid binder material to fill the pores and increase the mechanical strength of the layer and the adhesion of the layer. Optionally, a curing step may be applied to the layer. Methods for depositing polycrystalline metal oxide layers using PVD or CVD are described. Optionally, the layers are exposed to an anneal step. The polycrystalline metal oxide layers are then exposed to a vapor or liquid texturing reagent to texture the surface of the layer.
Abstract:
Provided are semiconductor devices, such as resistive random access memory (ReRAM) cells, that include current limiting layers formed from doped metal oxides and/or nitrides. These current limiting layers may have resistivities of at least about 1 Ohm-cm. This resistivity level is maintained even when the layers are subjected to strong electrical fields and/or high temperature annealing. In some embodiments, the breakdown voltage of a current limiting layer may be at least about 8V. Some examples of such current limiting layers include titanium oxide doped with niobium, tin oxide doped with antimony, and zinc oxide doped with aluminum. Dopants and base materials may be deposited as separate sub-layers and then redistributed by annealing or may be co-deposited using reactive sputtering or co-sputtering. The high resistivity of the layers allows scaling down the size of the semiconductor devices including these layer while maintaining their performance.
Abstract:
A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
Abstract:
Embodiments described herein provide method for forming crystalline indium-gallium-zinc oxide (IGZO). A substrate is provided. A seed layer is formed above the substrate. The seed layer has a crystalline structure that is substantially dominant along the c-axis. An IGZO layer is formed above the seed layer. The seed layer may include zinc oxide. A stack of alternating seed layers and IGZO layers may be formed.
Abstract:
Embodiments provided herein describe storage capacitors for active matrix displays and methods for making such capacitors. A substrate is provided. A bottom electrode is formed above the substrate. A dielectric layer is formed above the bottom electrode. A top electrode is formed above the dielectric layer. A layer including an amorphous or crystalline material may be formed between the dielectric layer and the top electrode. The bottom electrode may have a thickness of at least 1000 Å, be formed in a gaseous environment of at least 95% argon, and/or not undergo an annealing process before the formation of a dielectric layer above the bottom electrode. The dielectric layer may include a nitrided high-k dielectric material.