Abstract:
A cooling apparatus for an electronics rack is provided which includes a door assembly coupled to the electronics rack at an inlet or air outlet side of the rack. The door assembly includes: an airflow opening configured to facilitate ingress or egress of airflow through the electronics rack with the door assembly mounted to the rack; an air-to-coolant heat exchanger disposed so that airflow through the airflow opening passes across the air-to-coolant heat exchanger, the air-to-coolant heat exchanger being configured to extract heat from the airflow passing thereacross; and a vapor condenser configured to facilitate condensing of dielectric fluid vapor egressing from at least one immersion-cooled electronic component section of the electronics rack. The cooling apparatus, including the door assembly, facilitates air-cooling and immersion-cooling of different electronic components of the electronics rack.
Abstract:
A cooling method is provided which includes providing a cooling apparatus that includes one or more coolant-cooled structures attached to one or more electronic components, one or more coolant conduits, and one or more coolant manifolds. The coolant-cooled structure(s) includes one or more coolant-carrying channels, and the coolant manifolds includes one or more rotatable manifold sections. One coolant conduit couples in fluid communication a respective rotatable manifold section and the coolant-carrying channel(s) of a respective coolant-cooled structure. The respective rotatable manifold section is rotatable relative to another portion of the coolant manifold to facilitate detaching of the coolant-cooled structure from its associated electronic component while maintaining the coolant-cooled structure in fluid communication with the respective rotatable manifold section through the one coolant conduit, which in one embodiment, is a substantially rigid coolant conduit.
Abstract:
A cooling apparatus and method are provided for cooling an electronic subsystem of an electronics rack. The cooling apparatus includes a local cooling station, which has a liquid-to-air heat exchanger and ducting for directing a cooling airflow across the heat exchanger. A cooling subsystem is associated with the electronic subsystem of the rack, and includes either a housing facilitating immersion cooling of electronic components of the electronic subsystem, or one or more liquid-cooled structures providing conductive cooling to the electronic components of the electronic subsystem. A coolant loop couples the cooling subsystem to the liquid-to-air heat exchanger of the local cooling station. In operation, heat is transferred via circulating coolant from the electronic subsystem and rejected in the liquid-to-air heat exchanger of the local cooling station to the cooling airflow passing across the liquid-to-air heat exchanger. In one embodiment, the cooling airflow is outdoor air.
Abstract:
Cooling apparatuses and methods are provided for pumped immersion-cooling of selected electronic components of an electronic system, such as a node or book of a multi-node rack. The cooling apparatus includes a housing assembly defining a compartment about the component(s) to be cooled, which is coupled to a first side of a printed circuit board. The assembly includes a first frame with an opening sized to accommodate the component(s), and a second frame. The first and second frames are sealed to opposite sides of the board via a first adhesive layer and a second adhesive layer, respectively. The printed circuit board is at least partially porous to a coolant to flow through the compartment, and the first frame, second frame, and first and second adhesive layers are non-porous with respect to the coolant, and provide a coolant-tight seal to the first and second sides of the printed circuit board.
Abstract:
A method is provided for facilitating powering and cooling of one or more electronics racks. The method includes: providing a frame; associating at least one bulk power assembly with the frame, the at least one bulk power assembly being configured to provide power to the electronics rack(s), wherein the frame with the associated one or more bulk power assemblies is distinct from the electronics rack(s); and associating one or more heat exchange assemblies with the frame, the heat exchange assembly(ies) being configured to cool system coolant provided to the electronics rack(s). In operation, heat is transferred by the heat exchange assembly(ies) from the system coolant to a facility coolant, and the frame with the associated bulk power assembly(ies) and associated heat exchange assembly(ies) provides both power and cooling to the electronics rack(s).
Abstract:
A heat sink and method of fabrication are provided for removing heat from an electronic component(s). The heat sink includes a heat sink base and frame. The base has a first coefficient of thermal expansion (CTE), and includes a base surface configured to couple to the electronic component to facilitate removal of heat. The frame has a second CTE, and is configured to constrain the base surface in opposing relation to the electronic component, wherein the first CTE is greater than the second CTE. At least one of the heat sink base or frame is configured so that heating of the heat sink base results in a compressive force at the base surface of the heat sink base towards the electronic component that facilitates heat transfer from the electronic component. A thermal interface material is disposed between the base surface and the electronic component.
Abstract:
Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
Abstract:
Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
Abstract:
Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
Abstract:
A method of providing a cooling apparatus for cooling a heat-dissipating component(s) of an electronics enclosure includes: providing a thermal conductor to couple to the heat-dissipating component(s), the thermal conductor including a first conductor portion coupled to the heat-dissipating component, and a second conductor portion to position along an air inlet side of the electronics enclosure, so that in operation, the first conductor portion transfers heat from the component(s) to the second conductor portion; coupling at least one air-cooled heat sink to the second conductor portion to facilitate transfer of heat to airflow ingressing into the enclosure; providing at least one thermoelectric device coupled to the first or second conductor portion to facilitate providing active auxiliary cooling to the thermal conductor; and providing a controller to control operation of the thermoelectric device(s) and to selectively switch operation of the cooling apparatus between active and passive cooling modes.