Abstract:
A method of fabricating a liquid-cooled heat sink assembly, including: providing a heat transfer element including a heat transfer base having opposite first and second sides, and a plurality of thermally conductive fins extending from the first side of the heat transfer base, the second side of the heat transfer base to couple to a component(s) to be cooled; providing a coolant-carrying structure including a coolant-carrying base and a coolant-carrying compartment through which liquid coolant flows, the coolant-carrying base including a plurality of fin-receiving openings sized and positioned for the plurality of thermally conductive fins of the heat sink base to extend through; and attaching the heat transfer element and coolant-carrying structure together with the plurality of thermally conductive fins extending through the fin-receiving openings in the coolant-carrying base into the coolant-carrying compartment.
Abstract:
Aspects include a method, system, and computer program product for determining a time to a threshold temperature of a device in a data center. A method includes measuring parameters for a device and the data center. A rate of change of temperature is determined based on the parameters. The change is compared to a change threshold. It is determined that a cooling system is operating below a threshold when the change is above the threshold. A first time is determined based on the rate of change of temperature and a machine learning model. The first and second time are compared, where the second time is a time to restore the cooling system above the threshold. A signal is transmitted when the first time is less than the second time. A cooling capacity is determined to have the temperature change of the device be equal to or less than the threshold.
Abstract:
Apparatuses and methods are provided for locking an air-moving assembly within a chassis when in operational state. The apparatus includes a locking louver assembly having a louver(s) and locking mechanism. The louver(s) is disposed at an air inlet or outlet of the air-moving assembly, and pivots between operational and quiesced orientations, dependent on presence or absence, respectively, of airflow through the air-moving assembly. The locking mechanism includes a keying element(s) affixed to the louver(s) to pivot therewith, which includes an elongated key(s) oriented in a first direction when the louver(s) is in operational orientation, and a second direction when in quiesced orientation. A key-receiving element(s) is associated with the chassis and includes a key opening(s) which receives and accommodates movement of the elongated key(s) between the first and second directions, and prevents removal of the air-moving assembly from the chassis with the key(s) oriented in the first direction.
Abstract:
Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
Abstract:
Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
Abstract:
Apparatuses and methods are provided for blocking removal of an air-moving assembly from a chassis when in operational state. The apparatus includes a protective louver assembly having a louver(s) and an interlock element(s). The louver(s) is disposed at an air inlet or an air outlet of the air-moving assembly, and pivots between an operational and a quiesced orientation, dependent on presence or absence, respectively, of airflow through the air-moving assembly. The interlock element(s) is associated with the louver(s) to pivot with the louver(s) between the operational orientation and the quiesced orientation. In the operational orientation, the interlock element(s) blocks, at least in part, access to at least one fastener securing the air-moving assembly within the chassis, and thereby prevents removal of the air-moving assembly from the chassis when in the operational state.
Abstract:
Cooling apparatuses and methods of fabrication are provided which facilitate immersion-cooling of an electronic component(s). The cooling apparatus includes a drawer-level enclosure sized to reside within an electronics rack. The drawer-level enclosure includes a compartment which accommodates one or more electronic components to be cooled. A dielectric fluid is disposed within the compartment. The dielectric fluid includes a liquid dielectric which at least partially immerses the electronic component(s) within the compartment(s). A hinged, liquid-cooled heat sink is also disposed within the compartment of the enclosure. The heat sink operatively facilitates cooling the one or more electronic components via the dielectric fluid within the compartment, and is rotatable between an operational position overlying the electronic component(s), and a service position which allows access to the electronic component(s).
Abstract:
Liquid-cooled heat sink assemblies are provided which include: a thermally conductive base structure having a sidewall surface and a main heat transfer surface; and a manifold structure attached to the base structure, with the base structure residing at least in part within a recess in the manifold structure. Together, the base and manifold structures define a coolant-carrying compartment through which liquid coolant flows, at least in part, in a direction substantially parallel to the main heat transfer surface of the base structure, and at least one of the sidewall surface of the thermally conductive base structure or an opposing surface thereto of the manifold structure includes a continuous groove. A sealing member is disposed, at least in part, within the continuous groove, and provides a fluid-tight seal between the thermally conductive base structure and the manifold structure.
Abstract:
An air-cooling apparatus is provided which includes a securing mechanism for holding two or more separate electronics racks in fixed relation adjacent to each other, and a multi-rack door sized and configured to span the air inlet or air outlet sides of the racks. The securing mechanism holds the electronics racks in fixed relation with their air inlet sides facing a first direction, and air outlet sides facing a second direction. The door includes a door frame with an airflow opening. The airflow opening facilitates the ingress or egress of airflow through the electronics racks, and the door further includes an air-to-liquid heat exchanger supported by the door frame, and disposed so that air flowing through the airflow opening passes across the heat exchanger. In operation, the heat exchanger extracts heat from the air passing through the separate electronics racks.
Abstract:
A coolant-conditioning unit is provided which includes a facility coolant path, having a facility coolant flow control valve, and a system coolant path accommodating a system coolant, and having a bypass line with a system coolant bypass valve. A heat exchanger is coupled to the facility and system coolant paths to facilitate transfer of heat from the system coolant to facility coolant in the facility coolant path, and the bypass line is disposed in the system coolant path in parallel with the heat exchanger. A controller automatically controls a regulation position of the coolant bypass valve and a regulation position of the facility coolant flow control valve based on a temperature of the system coolant, and automatically adjusts the regulation position of the system coolant bypass valve to facilitate maintaining the facility coolant flow control valve at or above a specified, partially open, minimum regulation position.