Abstract:
Processes for imaging and developing imageable elements useful as lithographic printing plate precursors either thermally or with ultraviolet radiation that use the same developer are disclosed. The imageable elements comprise a top layer and an underlayer. The top layer contains a phenolic polymer and a material that has either the o-benzoquinonediazide functionality or the o-diazonaphthoquinone functionality. The developer is a 20:80 to 80:20 mixture of (1) an aqueous alkaline developer that has a pH greater than 11 and contains about 2 wt % to about 8 wt % of an alkali metal silicate, and (2) a solvent based developer that contains about 0.5 wt % to about 15 wt % of an organic solvent or mixture of organic solvents.
Abstract:
The present invention also includes an imageable element, comprising a substrate and a thermally imageable composition comprising a thermally sensitive polymer which exhibits an increased solubility in an aqueous developer solution upon heating. The thermally sensitive polymer includes at least one covalently bonded unit and at least one thermally reversible non-covalently bonded unit, which includes a two or more centered H-bond within each of the non-covalently bonded unit. The present invention also includes a method of producing the imaged element. The present invention still further includes a thermally imageable composition comprising comprising a thermally sensitive polymer according to the present invention and a process for preparing the thermally sensitive polymer, which is a supramolecular polymer. The process includes contacting a hydrocarbyl-substituted isocytosine and a diisocyanate to produce a mono-adduct and contacting the mono-adduct and a polyfunctional material to produce the supramolecular polymer.
Abstract:
A negative waterless plate contains a sheet substrate; a radiation sensitive imaging layer composed of a diazido naphthaquinone ester or amide compound, such as diazido naphthaquinone sulfonate of a phenolic resin, and a polyurethane prepared by reacting a di-isocyanate and a diol; and a silicone layer. The planographic printing plate is imagewise exposed to actinic radiation through a negative original to form exposed areas of the imaged layer which are soluble or dispersible in a developer liquid. After imaging exposure, the developer liquid is applied which penetrates the silicone layer and dissolves the areas exposed to the radiation. The coating areas not exposed by the radiation remain intact. During this development procedure, areas of the silicone layer overlying the exposed areas are removed along with the underlying soluble areas to produce an imaged planographic printing plate having uncovered ink receptive areas and complimentary ink repellent areas of the silicone layer. In use, the developed plate is mounted on a dry planographic printing press containing only a lithographic ink; and used to print a positive image on conventional print stock.
Abstract:
A radiation sensitive composition containing an adduct of a diazonium resin having pendant diazonium groups, with a sulfonated acrylic copolymer having pendant sulfonate groups. The sulfonated acrylic copolymer contains an acrylic moiety and a sulfonated styryl or acrylic moiety. The copolymer may optionally contain styryl moieties. The composition is useful as a radiation sensitive layer in imaging elements for graphic arts applications and is particularly useful in preparing durable, long-wear, printing plates.
Abstract:
Systems and methods for massive model visualization in product data management (PDM) systems. A method includes storing a hierarchical product data structure by a product data management (PDM) system, including a plurality of occurrence nodes and component nodes. The method includes receiving a query that references an occurrence node and at least one cell index value and determining a query result corresponding to the query. The query result identifies at least one occurrence node that corresponds to the cell index value. The method includes forming a query result chain corresponding to the query result, the query result chain filtered by a structural criterion, and applying a configuration rule to the filtered query result chain to identify child nodes of the filtered query result chain that conform to the configuration rule, and thereby producing a configured spatial retrieval result.
Abstract:
Massive model visualization in product data management (PDM) systems. A method includes storing a massive model database for a product data structure in a PDM server system, including storing a spatial bounding box hierarchy that acts as a spatial index for spatial bounding boxes of a plurality of unconfigured components of the product data structure and storing a cell table that associates cells of the spatial bounding box hierarchy to corresponding component identifiers of the product data structure. The method includes responding to component identifier requests from a client system by sending requested component identifiers from the product data structure to the client system. The component identifier requests correspond to visible components of an assembly represented by the product data structure. The method includes transmitting geometric data to the client system, the geometric data corresponding to components of the product data structure associated with the requested component identifiers.
Abstract:
A negative-working lithographic printing plate precursor is designed for improved printout or contrast between exposed and non-exposed regions in its imageable layer. The imaged precursor can be developed on-press. The improvement in printout is achieved by using a combination of at least two infrared radiation absorbing cyanine dyes. At least one of these cyanine dyes comprises a methine chain substituent that comprises a group represented by Structure (I): wherein Q1 and Q2 are hydrogen atoms or the same or different monovalent substituents, or Q1 and Q2 together provide carbon or heteroatoms to form a substituted or unsubstituted unsaturated ring. At least one other infrared radiation absorbing cyanine dyes does not comprise a group represented by Structure (I).
Abstract:
A negative-working lithographic printing plate precursor have an outermost imageable layer that includes an oxygen scavenger and shelf-life stabilizer that is represented by either Structure (I) or Structure (II) below: HOOC—Ar—N(R1)(R2) (I) HOOC—R5—N(R6)(R7) (II) wherein Ar is a phenylene or naphthylene group, R1 and R2 are independently alkyl, alkenyl, alkynyl, phenyl, phenoxy, —R5OH, —CH2—C(═O)—R3, or —CH2—C(═O)O—R4 groups, R3 is hydrogen or an alkyl or phenyl group, R4 is an alkyl or phenyl group, R5 is an alkylene group, R6 and R7 are independently hydrogen or an alkyl, —R5OH, —R5C(═O)—R8, or —R5C(═O)OR9 group, R8 is hydrogen or an alkyl group, and R9 is an alkyl group, provided that the oxygen scavenger has no more than one carboxyl group.
Abstract:
A negative-working imageable element has an imageable layer and a topcoat layer that contains a composition that will change color upon exposure to imaging infrared radiation. The imageable element can be imaged and developed on-press to provide images with improved contrast for print-out.
Abstract:
Lithographic printing plates are prepared by imaging and developing negative-working lithographic printing plate precursors that include certain particulate polymeric binders in the photosensitive imageable layer. Such particulate polymeric binders are poly(urethane-acrylic) hybrids. Development is carried out using a working strength developer that includes one or more organic solvents in a total amount of at least 7 weight % and an anionic surfactant in an amount of at least 5 weight %.