Abstract:
A non-volatile memory device has the pages of a certain memory block reallocated to other blocks in order to increase decrease disturb and increase reliability. Each of the reallocation blocks that contain the reallocated pages from the desired memory block are coupled to a wordline driver. These wordline drivers have a subset of the global wordlines as inputs. The desired wordline driver is selected by an appropriate select signal from a block decoder and an indication on an appropriate global wordline. This causes the wordline driver to generate a local wordline to the desired block with the reallocated page to be accessed.
Abstract:
A method, apparatus and system are described which provide a memory device having an array of cells which may be selectively designated for either error correction code use or redundancy cell use.
Abstract:
A non-volatile memory array with both single level cells and multilevel cells. The single level and multilevel cells, in one embodiment, are alternated either along each bit line. An alternate embodiment alternates the single and multilevel cells along both the bit lines and the word lines so that no single level cell is adjacent to another single level cell in either the word line or the bit line directions.
Abstract:
The method for reducing program disturb in a flash memory array biases a selected wordline at a programming voltage. One of the unselected wordlines, closer to array ground than the selected wordline, is biased at a voltage that is less than Vpass. The memory cells on this unselected wordline that are biased at this voltage block the gate induced drain leakage from the cells further up in the array. The remaining unselected wordlines are biased at Vpass. In another embodiment, a second source select gate line is added to the array. The source select gate line that is closest to the wordlines is biased at the voltage that is less than Vpass in order to block the gate induced drain leakage from the array.
Abstract:
A non-volatile memory is described that utilizes a cache read mode of operation, where a next page of memory is being read/sensed from the memory array by the sense amplifiers while a previously read page of memory is being read from the memory I/O buffer, wherein the next page is user selected. This random cache read mode allows for a memory with a random page read capability, in which the address of the next page of data to be read is user selectable, which benefits from the low latency of a cache read mode of operation due to concurrent data sensing and data I/O.
Abstract:
The method for reducing program disturb in a flash memory array biases a selected wordline at a programming voltage. One of the unselected wordlines, closer to array ground than the selected wordline, is biased at a voltage that is less than Vpass. The memory cells on this unselected wordline that are biased at this voltage block the gate induced drain leakage from the cells further up in the array. The remaining unselected wordlines are biased at Vpass. In another embodiment, a second source select gate line is added to the array. The source select gate line that is closest to the wordlines is biased at the voltage that is less than Vpass in order to block the gate induced drain leakage from the array.
Abstract:
A sensing circuit including a sense amplifier to resolve a data signal generated by a memory cell is disclosed herein. The sensing circuit includes a bit line to receive the data signal, a first pre-charge device coupled to the bit line and configured to pre-charge the bit line, a device for providing a bias coupled to the bit line and configured to provide a bias to the bit line, and a reference node configured to be at least one pre-determined level. In one embodiment the pre-determined level is equal to a low potential such as ground and in another embodiment equal to a high potential such as VDD. One or more switching devices allows for the activation or deactivation of the pre-charge device allowing to pre-charge the bit line to a certain potential and the sensing circuit quickly and accurately determines whether a logical state of ‘1’ or ‘0’ is being applied to the bit line.
Abstract:
A reference cell produces a voltage rise on a bit line that is proportional to, and preferably half of, the voltage rise on another bit line produced by a TCCT based memory cell in an “on” state. The reference cell includes an NDR device, a gate-like device disposed adjacent to the NDR device, a first resistive element coupled between the NDR device and the bit line, and a second resistive element coupled between a sink and the bit line. Resistances of the first and second resistive elements are about equal and about twice as much as the resistance of a pass transistor of the a TCCT based memory cell.
Abstract:
A reference cell produces a voltage rise on a bit line that is proportional to, and preferably half of, the voltage rise on another bit line produced by a TCCT based memory cell in an “on” state. The reference cell includes an NDR device, a gate-like device disposed adjacent to the NDR device, a first resistive element coupled between the NDR device and the bit line, and a second resistive element coupled between a sink and the bit line. Resistances of the first and second resistive elements are about equal and about twice as much as the resistance of a pass transistor of the a TCCT based memory cell.