Abstract:
Exemplary embodiments of the invention s are directed to a wireless power system with different coupling loops, such as two loops. The coupling loops are switched. One can be used for vicinity coupling, e.g., greater than a distance away, the other for proximity coupling, e.g., less than a distance away.
Abstract:
Exemplary embodiments are directed to wireless power transfer. A wireless power receiver includes a receive antenna for coupling with a transmit antenna of transmitter generating a magnetic near field. The receive antenna receives wireless power from the magnetic near field and includes a resonant tank and a parasitic resonant tank wirelessly coupled to the resonant tank. A wireless power transmitter includes a transmit antenna for coupling with a receive antenna of a receiver. The transmit antenna generates a magnetic near field for transmission of wireless power and includes a resonant tank and a parasitic resonant tank coupled to the resonant tank.
Abstract:
This disclosure provides systems, methods and apparatus for wirelessly transferring power using parasitic resonators. In one aspect a wireless power receiver apparatus for powering or charging an electric vehicle is provided. The wireless power receiver apparatus includes a receive circuit including a first coil. The receive circuit is configured to wirelessly receive power so as to power or charge or power the electric vehicle. The wireless power receiver apparatus further includes a passive circuit including a second coil. The passive circuit is configured to wirelessly receive power from a transmit circuit including a third coil. The passive circuit is further configured to wirelessly retransmit power received from the transmit circuit to the receive circuit. The wireless power receiver apparatus further includes a controller configured to displace the second coil from the first coil is provided.
Abstract:
Magneto mechanical systems used for wireless power reception. A miniature moving magnet is placed in an oscillating magnetic field. Movement of the magnet causes power to be generated.
Abstract:
Techniques for wireless power transmission. An antenna has a part that amplifies a flux to make the antenna have a larger effective size than its actual size.
Abstract:
Exemplary embodiments are directed to wireless charging. An electronic device may comprise at least one receive antenna integrated within an electronic device and configured to receive wireless power from a wireless transmit antenna. Further, the at least one receive antenna may be spaced from each conductive component within the electronic device having a clearance therebetween adapted to enable formation of a magnetic field around the loop conductor.
Abstract:
Exemplary embodiments are directed to wireless power transfer and Near-Field Communication (NFC) operation. An electronic device includes an antenna configured to resonate at an NFC frequency and generate an induced current. The electronic device further including rectifier circuitry and NFC circuitry each concurrently coupled to the induced current. The rectifier circuitry configured to rectify the induced current into DC power for the electronic device and the NFC circuitry configured to demodulate any data on the induced current. A method for concurrent reception of wireless power and NFC includes receiving an induced current from an antenna, rectifying the induced current into DC power for use by an electronic device, and demodulating the induced current concurrent with rectifying to determine any data for the NFC.
Abstract:
Exemplary embodiments of the invention s are directed to a wireless power system with different coupling loops, such as two loops. The coupling loops are switched. One can be used for vicinity coupling, e.g., greater than a distance away, the other for proximity coupling, e.g., less than a distance away.
Abstract:
A device is powered wirelessly using magnetically coupled resonance, either from a short distance, e.g., on a surface, or from or on a longer distance.