Abstract:
Embodiments of the present invention relate to a method and an apparatus for enabling a terminal to transmit a signal in a wireless communication system. According to one embodiment, a signal transmission method includes: receiving configuration information for multi-antenna transmission from a base station; configuring a multi-antenna transmission mode in accordance with the received configuration information; and transmitting an uplink channel having a plurality of symbols to the base station through multiple antennas.
Abstract:
A method for generating Acknowledgement/Negative Acknowledgement (ACK/NACK) information at a user equipment in a wireless communication system. The method according to one embodiment includes receiving a plurality of transport blocks through a plurality of downlink carriers from a base station. Each of the plurality of downlink carriers carries two or more transport blocks. The method according to the embodiment further includes generating the ACK/NACK information by concatenating ACK/NACK bits corresponding to the plurality of transport blocks. The ACK/NACK bits are concatenated using an index order of the downlink carriers and an index order of the two or more transport blocks associated with each of the downlink carriers. The index order of the downlink carriers is used firstly.
Abstract:
The present invention provides a data transmission device and method in a wireless communication system. The device comprises a processor which is connected with the M antennas and which is formed so as to generate data to be transmitted through the M antennas, on the basis of a precoding matrix; the precoding matrix is generated based on a plurality of matrices; and a first matrix, which is one matrix among the plurality of matrices, is selected from within a codebook for N antennas (where N
Abstract:
Provided are a method and an apparatus for transmitting a positioning reference signal (PRS) in a wireless communication system. A terminal obtains positioning subframe configuration information to determine at least one positioning subframe among a plurality of downlink subframes in a wireless frame, obtains downlink subframe configuration information to determine the type of each downlink subframe in the wireless frame, receives PRSs in at least one positioning subframe from a plurality of cells, and reports measured time differences between the PRSs received from the plurality of the cells. The type of each downlink subframe of the wireless frame is classified into a 1st type subframe and a 2nd type subframe, and the type of at least one positioning subframe is either the 1st type subframe or the 2nd type subframe. In addition, the PRSs are mapped into at least one positioning subframe on the basis of a single PRS pattern.
Abstract:
The present invention relates to a wireless communication system which supports carrier aggregation. More particularly, the present invention relates to a method and to an apparatus for enabling a user equipment to perform a handover in a wireless communication system which supports carrier aggregation. The method for performing a handover comprises the steps of: transmitting a measurement report on a target cell to a serving cell; receiving, from the serving cell, a message containing a signature route sequence index, cyclic shift parameters, and information related to the component carrier of the target cell; confirming contention-based signatures generated on the basis of the signature route sequence index and cyclic shift parameters; and transmitting one of said contention-based signatures to the target cell for random access, via one or more component carriers, on the basis of said information related to the component carrier. The present invention also relates to an apparatus for the method.
Abstract:
A terminal random access procedure is improved by allowing a mobile terminal to correctly map signature indexes onto cyclic shifted Zadoff-Chu (ZC) sequences when the deployed cells support a high-speed mobility by informing a mobile terminal whether a cell supports high-speed mobility.
Abstract:
A method for transmitting Acknowledgement/Negative-Acknowledgement (ACK/NACK) state information in a wireless communication system, the method including receiving, by a user equipment (UE), multiple transmission blocks through multiple downlink component carriers from a base station (BS); transmitting, by the UE, multiple transmission block ACK/NACK state information through a single uplink component carrier to the BS. The multiple transmission block ACK/NACK state information indicates at least two different numbers of ACK responses among ACK/NACK responses corresponding to each of the multiple transmission blocks.
Abstract:
A symbol mapping method for repetition coding is disclosed. The symbol mapping method comprises performing repetition coding on codeword to output repeated codeword symbols, and mapping the repeated codeword symbols with subcarriers located in different localized resource blocks. According to the embodiments of the present invention, it is possible to obtain maximum reliability in a receiving side by mapping codeword bits with subcarriers to reduce the number of bits having low reliability when a transmitting side uses repetition coding. Also, it is possible to improve decoding throughput and obtain channel diversity.
Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
A symbol mapping method for repetition coding is disclosed. The symbol mapping method comprises performing repetition coding on codeword to output repeated codeword symbols, and mapping the repeated codeword symbols with subcarriers located in different localized resource blocks. According to the embodiments of the present invention, it is possible to obtain maximum reliability in a receiving side by mapping codeword bits with subcarriers to reduce the number of bits having low reliability when a transmitting side uses repetition coding. Also, it is possible to improve decoding throughput and obtain channel diversity.