摘要:
An improved process is disclosed for the isomerization of olefins in gasoline streams using a medium-pore molecular-sieve catalyst. The process features high yields of C.sub.5 + isomerized product and avoids conversion of highly branched paraffins to equilibrium values.
摘要:
A process is presented for the increasing the yields of aromatics from reforming a hydrocarbon feedstream. The process includes splitting a naphtha feedstream into a light hydrocarbon stream, and a heavier stream having a relatively rich concentration of naphthenes. The heavy stream is reformed to convert the naphthenes to aromatics and the resulting product stream is further reformed with the light hydrocarbon stream to increase the aromatics yields. The catalyst is passed through the reactors in a sequential manner.
摘要:
A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
摘要:
One exemplary embodiment can be a process using an aromatic methylating agent. Generally, the process includes reacting an effective amount of the aromatic methylating agent having at least one of an alkane, a cycloalkane, an alkane radical, and a cycloalkane radical with one or more aromatic compounds. As such, at least one of the one or more aromatic compounds may be converted to one or more higher methyl substituted aromatic compounds to provide a product having a greater mole ratio of methyl to phenyl than a feed.
摘要:
A process is presented for the increasing the yields of aromatics from reforming a hydrocarbon feedstream. The process includes splitting a naphtha feedstream into a light hydrocarbon stream, and a heavier stream having a relatively rich concentration of naphthenes. The heavy stream is reformed to convert the naphthenes to aromatics and the resulting product stream is further reformed with the light hydrocarbon stream to increase the aromatics yields. The catalyst is passed through the reactors in a sequential manner.
摘要:
A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
摘要:
A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process further includes passing one or more catalyst streams through the reformers to optimize selectivity and conversions.
摘要:
A catalyst for selective hydrogenation of hydrocarbons is presented. The catalyst selectively hydrogenates acetylenes and diolefins to increase the monoolefins in a product stream. The catalyst includes a layered structure with an inert inner core and an outer layer bonded to the inner core, where the outer layer is a metal oxide and has at least two metals deposited on the outer layer.
摘要:
One exemplary embodiment can be a process for increasing a mole ratio of methyl to phenyl of one or more aromatic compounds in a feed. The process can include reacting an effective amount of one or more aromatic compounds and an effective amount of one or more aromatic methylating agents to form a product having a mole ratio of methyl to phenyl of at least about 0.1:1 greater than the feed.
摘要:
One exemplary embodiment can be a process for facilitating a transfer of a metal catalyst component from at least one donor particle to at least one recipient particle in a catalytic naphtha reforming unit. The process can include transferring an effective amount of the metal catalyst component from the at least one donor particle to the at least one recipient particle under conditions to effect such transfer to improve a conversion of a hydrocarbon feed.