摘要:
A magnetoresistive effect memory of an aspect of the present invention including a magnetoresistive effect element including a first magnetic layer having an invariable magnetization direction, a second magnetic layer having a variable magnetization direction, and an interlayer provided between the first magnetic layer and the second magnetic layer, and a reading circuit which passes a pulse-shaped read current through the magnetoresistive effect element to read data stored in the magnetoresistive effect element, wherein the pulse width of the read current is shorter than a period from an initial state to a cooperative coherent precession movement of magnetizations included in the second magnetic layer.
摘要:
A non-volatile semiconductor storage device includes: a memory string including a plurality of memory cells connected in series; a first selection transistor having one end connected to one end of the memory string; a first wiring having one end connected to the other end of the first selection transistor; a second wiring connected to a gate of the first selection transistor. A control circuit is configured to boost voltages of the second wiring and the first wiring in the erase operation, while keeping the voltage of the first wiring greater than the voltage of the second wiring by a certain potential difference. The certain potential difference is a potential difference that causes a GIDL current.
摘要:
A sense amplifier according to an example of the present invention has first, second, third and fourth FETs with a flip-flop connection. A drain of a fifth FET is connected to a first input node, and its source is connected to a power source node. A drain of a sixth FET is connected to a second input node, and its source is connected to the power source node. A sense operation is started by charging a first output node from the first input node with a first current and by charging a second output node from the second input node with a second current. The fifth and sixth FET are turned on after starting the sense operation.
摘要:
In a nonvolatile semiconductor memory device, a stacked body is formed by alternately stacking dielectric films and conductive films on a silicon substrate and a plurality of through holes extending in the stacking direction are formed in a matrix configuration. A shunt interconnect and a bit interconnect are provided above the stacked body. Conductor pillars are buried inside the through holes arranged in a line immediately below the shunt interconnect out of the plurality of through holes, and semiconductor pillars are buried inside the remaining through holes. The conductive pillars are formed from a metal, or low resistance silicon. Its upper end portion is connected to the shunt interconnect and its lower end portion is connected to a cell source formed in an upper layer portion of the silicon substrate.
摘要:
A magnetoresistive effect element includes a nonmagnetic layer having mutually facing first and second surfaces. A reference layer is provided on the first surface and has a fixed magnetization direction. A magnetization variable layer is provided on the second surface, has variable magnetization direction, and has a planer shape including a rectangular part, a first projected part, and a second projected part. The rectangular part has mutually facing first and second longer sides and mutually facing first and second shorter sides. The first projected part projects from the first longer side at a position shifted from the center toward the first shorter side. The second projected part projects from the second longer side at a position shifted from the center toward the second shorter side.
摘要:
A spin-injection magnetic random access memory according to an embodiment of the invention includes a magnetoresistive element having a magnetic fixed layer whose magnetization direction is fixed, a magnetic recording layer whose magnetization direction can be changed by injecting spin-polarized electrons, and a tunnel barrier layer provided between the magnetic fixed layer and the magnetic recording layer, a bit line which passes spin-injection current through the magnetoresistive element, the spin-injection current being used for generation of the spin-polarized electrons, a writing word line through which assist current is passed, the assist current being used for the generation of an assist magnetic field in a magnetization easy-axis direction of the magnetoresistive element, and a driver/sinker which determines a direction of the spin-injection current and a direction of the assist current.
摘要:
A magnetic memory device comprising, a magneto-resistance effect element that is provided at an intersection between a first write line and a second write line. And the magneto-resistance effect element having, an easy axis that extends in a direction of extension of the first write line, and a first conductive layer for electrical connection to the magneto-resistance effect element, the first conductive layer having sides which are in flush with sides of the magneto-resistance effect element.
摘要:
A magnetic field H1 in the hard-axis direction and a magnetic field H2 in the easy-axis direction are caused to simultaneously act on a MTJ element having an ideal asteroid curve, thereby reversing the magnetizing direction of the storing layer of the MTJ element. When the actual asteroid curve shifts in the hard-axis direction by Ho, a corrected synthesized magnetic field ({right arrow over (H1)}+{right arrow over (H2)}+{right arrow over (Ho)}) is generated in write operation to reliably reverse the magnetizing direction. The corrected synthesized magnetic field can easily be generated by individually controlling a write word/bit line current on the basis of programmed setting data.
摘要:
A magnetic random access memory includes a first magnetoresistive element which is used as a memory element, and a second magnetoresistive element which is used as a current load of a read bias circuit.
摘要:
A magnetic random access memory according to an example of the present invention comprises a magnetoresistive element, a write line for use in generation of a magnetic field for data writing with respect to the magnetoresistive element, and a strained layer which is disposed so as to correspond to the magnetoresistive element, and which has a function of being physically deformed at the time of data writing, and of controlling a magnitude of an switching magnetic field of the magnetoresistive element.