摘要:
A wireless power transmitter and receiver using an in-band communication and a method thereof are provided. In one embodiment, a wireless power transmitter using an in-band communication may include: a source resonance unit including a source resonator that is configured to transmit wireless power to one or more in-band resonators; a source controller configured to control a resonance frequency and an impedance of the source resonator, to detect an in-band resonator located in a location corresponding to a wireless power receiver among the in-band resonators, and to generate a control signal of the detected in-band resonator; and an in-band resonance unit configured to receive and demodulate identification information associated with the wireless power receiver via the one or more in-band resonators, and to transmit the wireless power and transmission data via the in-band resonator corresponding to the wireless power receiver.
摘要:
A wireless power transmission apparatus using near field focusing is provided. The wireless power transmission apparatus may include a source unit including a source resonator that transmits power wirelessly to a target apparatus, and a near field focusing unit to focus a near field of a magnetic field radiated in an omni-direction from the source resonator onto the target apparatus.
摘要:
An apparatus for transmitting a high efficiency variable power includes a pulse generating unit configured to generate a pulse signal comprising a pulse having a duration corresponding to an amount of power transmitted; a pulse stream generating unit configured to convert the pulse signal to a pulse stream having pulse shape corresponding to the duration of the pulse and data to be transmitted; and a high frequency modulating unit configured to output a variable power by modulating a high frequency signal having a constant amplitude on a time axis by repeatedly outputting and not outputting the high frequency signal based on the pulse stream.
摘要:
Provided is an anti-collision method and apparatus used during wireless power transmission with respect to a plurality of target devices. According to one general aspect, an anti-collision method in wireless power transmission may include: transmitting, from a source device to one or more target devices, an access standard instruction including an access standard that is used for identifying the target devices; transmitting, to the one or more target devices, a call parameter used to detect identifications (IDs) of the target devices, generated based on the access standard; and assigning, to the one or more target devices, control IDs based on response signals that the one or more target devices transmits in response to the call parameter.
摘要:
Provided is a resonator for a wireless power transmission, the resonator including a transmission line unit including a plurality of transmission line sheets arranged in parallel, and a capacitor provided at a predetermined position of the transmission line unit.
摘要:
A wireless power transmission system, and a method of controlling power in the wireless power transmission system based on a detection parameter are provided. The method includes transmitting a request signal to a device. The method further includes receiving, from the device, a response signal corresponding to the request signal, the response signal including a parameter of the device. The method further includes generating an operation power based on the parameter of the device, the operation power being used for an operation of the device.
摘要:
A wireless power transmission system includes a charging and path controller configured to supply, to a battery module, power generated by a solar cell module, or power generated by an alternating current-to-direct current (AC/DC) converter, based on a control signal; a power converter configured to receive power from the battery module and generate a supply power to be supplied to a target device from power received from the battery module using a resonant frequency; a source resonator configured to receive the supply power from the power converter and transmit the supply power received from the power converter to the target device; and a control/communication unit configured to generate the control signal of the charging and path controller based on an amount of the power generated by the solar cell module and an amount of power that can be output from the battery module.
摘要:
A communication apparatus in a wireless power transmission system includes an operating mode converter configured to switch an operating mode of the communication apparatus between a transmitting mode and a receiving mode according to a predetermined timing; and a transmitting unit configured to transmit state information of a channel occupied by a source including the communication apparatus using a continuous wave signal while the communication apparatus is operating in the transmitting mode irrespective of whether the communication apparatus is performing communication via the occupied channel. The source including the communication apparatus is configured to transmit wireless power. The occupied channel has been assigned to the source including the communication apparatus from a plurality of channels available in a communication cell for assignment to a plurality of sources each configured to transmit wireless power.
摘要:
Embodiments relate to a tag device, a reader device, and a radio frequency identification (RFID) system. The Q embodiment provides a tag device comprising: a reception module converting a received high frequency signal into a scale level, and Q converting the converted scale level into a digital signal to output the same; a transmission module modulating a transmission signal M to output the same; and a controller controlling the reception module and the transmission module. The tag device communicates with the reader device through wireless short distance communication.
摘要:
A source resonator for wirelessly transmitting power to a target device may include a magnetic field distribution adjusting unit that is configured to adjust the magnetic field generated by the source resonator. In one or more embodiments, the magnetic field distribution adjusting unit may adjust the magnetic field to be substantially uniform in a predetermined vicinity of the source resonator. For example, the magnetic field distribution adjusting unit may adjust the intensity of the magnetic field near the center of the source resonator to be substantially the same as the intensity of the magnetic field near an edge area of the source resonator.