摘要:
This disclosure relates to techniques for reducing a cost of coding prediction information in video coding. Video blocks in a generalized P/B (GPB) frame are encoded using up to two motion vectors calculated from reference pictures in two separate reference picture lists that are identical. Video blocks of a GPB frame may, therefore, be encoded using a bidirectional prediction mode with a first motion vector from a reference picture in a first reference picture list and a second motion vector from the same or substantially similar reference picture in a second reference picture list. The techniques include jointly coding the first and second motion vectors for a video block of a GPB frame. The techniques include coding the first motion vector relative to a first motion predictor generated from a motion vector of a neighboring block, and coding the second motion vector relative to the first motion vector.
摘要:
This disclosure describes techniques relevant to HTTP streaming of media data. According to these techniques, a server device may signal an open decoding refresh (ODR) random access point (RAP) for a movie segmentation of a movie representation. At least one frame of the media segmentation following the ODR RAP frame in decoding order may not be correctly decoded, and wherein each frame of the media segmentation following the ODR RAP frame in display order can be correctly decoded without relying on content of frames prior to the ODR RAP in display order. According to the techniques of this disclosure, a client device may communicate a request to a server device for the streaming of media data based on signaling of the ODR RAP. Also according to the techniques of this disclosure, a client device may commence decoding and/or playback of the movie representation based on signaling of the ODR RAP.
摘要:
In one example, a video decoder is configured to receive a value for a coding unit of video data, wherein the coding unit is partitioned into a plurality of sub-coding units, determine whether the sub-coding units are partitioned into further sub-coding units based on the value, and decode the sub-coding units and the further sub-coding units. In another example, a video encoder is configured to partition a coding unit of video data into a plurality of sub-coding units, determine whether to partition the sub-coding units into further sub-coding units, and encode the coding unit to include a value that indicates whether the sub-coding units are partitioned into the further sub-coding units.
摘要:
An asymmetric frame of a coded video bitstream may include a full resolution picture of a left view and a reduced resolution picture of a right view, where the left and right views form a stereo view pair for three-dimensional video playback. In one example, an apparatus includes a video encoder configured to receive a first picture of a first view of a scene having a first resolution, receive a second picture of a second view of the scene having a reduced resolution relative to the first resolution, form an asymmetric frame comprising the first picture and the second picture, and encode the asymmetric frame. In this manner, decoders of varying capabilities may receive the same bitstream, and the bitstream may consume less bandwidth than one or more bitstreams having full resolution pictures of a stereo view pair. The bitstream may have better quality than a bitstream having subsampled pictures.
摘要:
A method of interpolation in video coding in which an image comprising pixels arranged in rows and columns and represented by values having a specified dynamic range, the pixels in the rows residing at unit horizontal locations and the pixels in the columns residing at unit vertical locations, is interpolated to generate values for sub-pixels at fractional horizontal and vertical locations, the method comprising: a) when values for sub-pixels at half unit horizontal and unit vertical locations, and unit horizontal and half unit vertical locations are required, interpolating such values directly using weighted sums of pixels residing at unit horizontal and unit vertical locations; b) when values for sub-pixels at half unit horizontal and half unit vertical locations are required, interpolating such values directly using a weighted sum of values for sub-pixels residing at half unit horizontal and unit vertical locations calculated according to step (a); and c) when values for sub-pixels at quarter unit horizontal and quarter unit vertical locations are required, interpolating such values by taking the average of at least one pair of a first pair of values of a sub-pixel located at a half unit horizontal and unit vertical location, and a sub-pixel located at a unit horizontal and half unit vertical location and a second pair of values of a pixel located at a unit horizontal and unit vertical location, and a sub-pixel located at a half unit horizontal and half unit vertical location.
摘要:
A video encoder may encode video data by adaptively selecting between one-eighth-pixel and one-quarter-pixel precision motion vectors, and signal the selected precision. In one example, an apparatus includes a video encoder to encode a block of video data using a one-eighth-pixel precision motion vector when use of the one-eighth-pixel precision motion vector is determined to be preferable for the block over a one-quarter-pixel precision motion vector, and to generate a signal value indicative of the use of the one-eighth-pixel precision motion vector for the block, and an output interface to output the encoded block and the signal value. A video decoder may be configured to receive the signal value and the encoded block, analyze the signal value to determine whether the block was encoded using one-eighth-pixel precision or one-quarter-pixel precision, and decode the block based on the determination.
摘要:
In general, techniques are described for implementing an 8-point inverse discrete cosine transform (IDCT). An apparatus comprising an 8-point inverse discrete cosine transform (IDCT) hardware unit may implement these techniques to transform media data from a frequency domain to a spatial domain. The 8-point IDCT hardware unit includes an even portion comprising factors A, B that are related to a first scaled factor (μ) in accordance with a first relationship. The 8-point IDCT hardware unit also includes an odd portion comprising third, fourth, fifth and sixth internal factors (G, D, E, Z) that are related to a second scaled factor (η) in accordance with a second relationship. The first relationship relates the first scaled factor to the first and second internal factors. The second relationship relates the second scaled factor to the third, fourth, fifth and sixth internal factors.
摘要:
Techniques are described for encoding and decoding digital video data using macroblocks that are larger than the macroblocks prescribed by conventional video encoding and decoding standards. For example, the techniques include encoding and decoding a video stream using macroblocks comprising greater than 16×16 pixels. In one example, an apparatus includes a video encoder configured to encode a coded unit comprising a plurality of video blocks, wherein at least one of the plurality of video blocks comprises a size of more than 16×16 pixels and to generate syntax information for the coded unit that includes a maximum size value, wherein the maximum size value indicates a size of a largest one of the plurality of video blocks in the coded unit. The syntax information may also include a minimum size value. In this manner, the encoder may indicate to a decoder the proper syntax decoder to apply to the coded unit.
摘要:
This disclosure describes rules that may be applied during block-based video coding to ensure that quantization parameter selections for luma blocks will not adversely affect the quality of chroma blocks. In accordance with this disclosure, rate-controlled video encoding occurs in which quantization parameter changes in luma blocks are pre-evaluated to determine whether such quantization parameter changes in luma blocks will also cause quantization changes for chroma blocks. If quantization parameter changes in the luma blocks will also cause quantization changes for chroma blocks, then that quantization parameter change for luma blocks may be skipped and not evaluated. In this way, secondary effects of quantization parameter changes in the luma blocks (with respect to the chroma blocks) can be avoided.
摘要:
This disclosure describes filtering techniques applied by an encoder and a decoder during the prediction stage of a video encoding and/or decoding process. The filtering techniques may enhance the accuracy of predictive data used during fractional interpolation, and may improve predictive data of integer blocks of pixels. There are several aspects to this disclosure, including a useful twelve-pixel filter support that may be used for interpolation, techniques that use coefficient symmetry and pixel symmetry to reduce the amount of data needed to be sent between an encoder and a decoder to configure the filter support for interpolation, and techniques for filtering data at integer pixel locations in a manner that is similar to sub-pixel interpolation. Other aspects of this disclosure concern techniques for encoding information in the bitstream to convey the type of filter used, and possibly the filter coefficients used. Predictive coding of filter coefficients is also described.