摘要:
Semiconductor devices (102) and drain extended PMOS transistors (CT1a) are provided, as well as fabrication methods (202) therefor, in which a p-type separation region (130) is formed between an n-buried layer (108) and the transistor backgate (126) to increase breakdown voltage performance without increasing epitaxial thickness.
摘要:
Drain-extended MOS transistors (T1, T2) and semiconductor devices (102) are described, as well as fabrication methods (202) therefor, in which a p-buried layer (130) is formed prior to formation of epitaxial silicon (106) over a substrate (104), and a drain-extended MOS transistor (T1, T2) is formed in the epitaxial silicon layer (106). The p-buried layer (130) may be formed above an n-buried layer (120) in the substrate (104) for high-side driver transistor (T2) applications, wherein the p-buried layer (130) extends between the drain-extended MOS transistor (T2) and the n-buried layer (120) to inhibit off-state breakdown between the source (154) and drain (156).
摘要:
A transistor comprises a source region of a first conductivity type and electrically communicating with a first semiconductor region. The transistor also comprises a drain region of the first conductivity type and electrically communicating with a second semiconductor region that differs from the first semiconductor region. An interface exists between the first semiconductor region and the second semiconductor region. The transistor also comprises a voltage tap region comprising at least a portion located in a position that is closer to the interface than the drain region. A mixed technology circuit is also described.
摘要:
Semiconductor devices (102) and drain extended PMOS transistors (CT1a) are provided, as well as fabrication methods (202) therefor, in which a p-type separation region (130) is formed between an n-buried layer (108) and the transistor backgate (126) to increase breakdown voltage performance without increasing epitaxial thickness.
摘要:
High side extended-drain MOS driver transistors (T2) are presented in which an extended drain (108, 156) is separated from a first buried layer (120) by a second buried layer (130), wherein an internal or external diode (148) is coupled between the first buried layer (120) and the extended drain (108, 156) to increase the breakdown voltage.
摘要:
Extended-drain MOS transistor devices and fabrication methods are provided, in which a drift region of a first conductivity type is formed between a drain of the first conductivity type and a channel. The drift region comprises first and second portions, the first portion extending partially under a gate structure between the channel and the second portion, and the second portion extending laterally between the first portion and the drain, wherein the first portion of the drift region has a concentration of first type dopants higher than the second portion.
摘要:
An embodiment of the instant invention is a transistor formed on a semiconductor substrate of a first conductivity type and having an upper surface, the transistor comprising: a well region (well 204 of FIG. 1a) formed in the semiconductor substrate (layer 202 of FIG. 1a), the well region of a second conductivity type opposite that of the first conductivity type; a source region (source region 208 of FIG. 1a) formed in the well region in the semiconductor substrate, the source region of the second conductivity type; a drain region (drain 210 of FIG. 1a) formed in the semiconductor substrate and spaced away from the source region by a channel region (given by length L1+L2), the drain region of the second conductivity type; a conductive gate electrode (layer 218 of FIG. 1a) disposed over the semiconductor substrate and over the channel region; a gate insulating layer (layer 214 of FIG. 1a) disposed between the conductive gate electrode and the semiconductor substrate and having a length, the gate insulating layer comprising: a first portion of the gate insulating layer which has a first length (L1) and a first thickness; a second portion of the gate insulating layer which has a second length (L2) and a second thickness which is substantially thicker than the first thickness, the sum of the first length and the second length equalling the length of the gate insulating layer; and wherein the first portion of the gate insulating layer being situated proximate to the source region and spaced away from the drain region by the second portion of the gate insulating layer; and wherein the well region having a dopant concentration less than that of the source region and the drain region, the well region extends at least from source region towards the drain region so as to completely underlie the first portion of the gate insulating layer and to underlie at least the second portion of the gate insulating layer.
摘要:
An integrated circuit on a (100) substrate containing an n-channel extended drain MOS transistor with drift region current flow oriented in the direction with stressor RESURF trenches in the drift region. The stressor RESURF trenches have stressor elements with more than 100 MPa compressive stress. An integrated circuit on a (100) substrate containing an n-channel extended drain MOS transistor with drift region current flow oriented in the direction with stressor RESURF trenches in the drift region. The stressor RESURF trenches have stressor elements with more than 100 MPa compressive stress. An integrated circuit on a (100) substrate containing a p-channel extended drain MOS transistor with drift region current flow oriented in a direction with stressor RESURF trenches in the drift region. The stressor RESURF trenches have stressor elements with more than 100 MPa tensile stress.
摘要:
An integrated circuit containing a voltage divider having an upper resistor of unsilicided gate material over field oxide around a central opening and a drift layer under the upper resistor, an input terminal coupled to an input node of the upper resistor adjacent to the central opening in the field oxide and coupled to the drift layer through the central opening, a sense terminal coupled to a sense node on the upper resistor opposite from the input node, a lower resistor with a sense node coupled to the sense terminal and a reference node, and a reference terminal coupled to the reference node. A process of forming the integrated circuit containing the voltage divider.
摘要:
An integrated circuit containing a gate controlled voltage divider having an upper resistor on field oxide in series with a transistor switch in series with a lower resistor. A resistor drift layer is disposed under the upper resistor, and the transistor switch includes a switch drift layer adjacent to the resistor drift layer, separated by a region which prevents breakdown between the drift layers. The switch drift layer provides an extended drain or collector for the transistor switch. A sense terminal of the voltage divider is coupled to a source or emitter node of the transistor and to the lower resistor. An input terminal is coupled to the upper resistor and the resistor drift layer. A process of forming the integrated circuit containing the gate controlled voltage divider.