摘要:
A method and system for providing protection for a superconducting electrical cable located in a utility power network includes detecting a fault current on the superconducting electric cable, determining the cumulative total energy dissipated in the superconducting electrical cable from the fault current and at least one prior fault current over a predetermined time period, and determining whether to disconnect the superconducting electrical cable from the utility power network on the basis of the cumulative total energy dissipated.
摘要:
The present invention relates to embedded attenuated phase shift mask blanks for use in lithography for an exposure wavelength of 300 nm or less, and a method of fabricating such mask blanks by ion beam deposition. In particular, the mask blanks comprise a substrate and a thin film system wherein the thin film system comprises a transmission control sublayer comprising one or more metals or metal compounds selected from the group consisting of Mg, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Zn, Ge, Sn, Pb, oxides, nitrides, borides and carbides thereof, and combinations of metals and compounds thereof; and a phase shift control sublayer comprising borides, carbides, oxides and/or nitrides of Ge, Si and/or Al or combinations thereof.
摘要:
A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.
摘要:
A mask blank and photomask for exposure light having a wavelength of 300 nm or is less described having an improved chemical durability in particular with respect to alkaline cleaning procedures. In particular, a mask blank and photomask comprise an additional ultra thin protection layer provided on a silicon and/or aluminum containing layer.
摘要:
Activation system includes a reception device for receiving an activation signal (SIGA), and an activation circuit (4) for activating an electric circuit (5). A pyroelectric element (3) is connected to the reception device (1) and to the activation circuit (4). The pyroelectric element can be heated by the activation signal (SIGA) in such a way that a voltage high enough to actuate the activation circuit (4) is produced in the pyroelectric element.
摘要:
The present invention relates to a nucleic acid molecule which encodes a protein with the function of a plant Mg chelatase subunit CHLD or an active fragment thereof; a protein which has the function of a plant Mg chelatase subunit CHLD or an active fragment thereof, preferably a recombinant protein; a method of determining the interaction of plant Mg chelatase subunits, in which a host cell is transformed with a DNA sequence as claimed in one or more of claims 1 to 3 and at least with one DNA sequence encoding a further subunit of Mg chelatase in such a manner that the interaction of the Mg chelatase gene products leads to a directly or indirectly, qualitatively or quantitatively measurable signal, preferably by activating a marker gene, and transgenic plants, transgenic plant cells, transgenic plant organs, transgenic plant seeds, transgenic propagation material comprising an abovementioned nucleic acid molecule.
摘要:
A voltage generator (1) for conversion of non-electrical primary energy (PE) to a voltage signal (USIG, USIG′) by means of induction. The voltage generator (1) has at least one mechanical energy store (2) for holding the primary energy (PE), and which has at least one changeover point (P). At least one induction system (3) is provided which can be coupled to the mechanical energy store (2), with the mechanical energy store (2) carrying out a movement on reaching the at least one changeover point (P) by means of which movement a voltage signal (USIG, USIG′) can be induced in the induction system (3).
摘要:
The present invention relates to a nucleic acid molecule which encodes a protein with the function of a plant Mg chelatase subunit CHLD or an active fragment thereof; a protein which has the function of a plant Mg chelatase subunit CHLD or an active fragment thereof, preferably a recombinant protein; a method of determining the interaction of plant Mg chelatase subunits, in which a host cell is transformed with a DNA sequence as claimed in one or more of claims 1 to 3 and at least with one DNA sequence encoding a further subunit of Mg chelatase in such a manner that the interaction of the Mg chelatase gene products leads to a directly or indirectly, qualitatively or quantitatively measurable signal, preferably by activating a marker gene, and transgenic plants, transgenic plant cells, transgenic plant organs, transgenic plant seeds, transgenic propagation material comprising an abovementioned nucleic acid molecule.
摘要:
A method for manufacturing vinyl chloride-butyl acrylate graft copolymers for processing by injection molding is provided wherein vinyl chloride is grafted onto crosslinked polybutyl acrylate in the presence of chain regulators. The graft copolymers exhibit excellent flow characteristics as a melt and provide molded parts with good surface quality and excellent mechanical properties.
摘要:
A magnetic drum separator (2), with a drum (6) rotatable about a rotational axis (4), a magnet arrangement (10) of a plurality of magnets (12) arranged in the interior (8) of the drum (6), a separation zone (18) in the exterior space (14) of the drum (6); a feed material (22) flows through the separation zone (18) and is there separable with the aid of a magnetic field (26) generated by the magnet arrangement (10), into a waste stream (30) and a recyclable material stream (28). A relative position (R) of at least one of the magnets (12) relative to the rotational axis (4) can be varied. A nominal magnitude (S) for a process value (78) on the drum separator (2) that is influenced by the separation behavior (32) is specified. At least one measurement device (74) detects an actual magnitude (I) of the process value (78), and a controller (82), which changes the relative position (R) of the at least one of the magnets (12), whereby the actual magnitude (I) is controlled to approach the nominal magnitude (S).