Abstract:
A selective hydrogenation catalyst system, and a process for its preparation and its use. The catalyst system of the invention comprises a support material, a Pd-containing catalyst component and a Bi-containing cocatalyst component. The catalyst system of the invention is manufactured by impregnating the support material simultaneously or separately with Pd-containing solution, Bi-containing solution or/and one or more other cocatalyst solutions, and then drying and calcining. The activity and selectivity of the catalyst system of the invention, in selective hydrogenation of acetylenic and diolefmic compounds in hydrocarbon feeds, are significantly improved, while the green oil formation and carbon deposit on the catalyst reduced, and the service life increased and production costs decreased.
Abstract:
A method for grouping I/O vectors to be transferred across a distributed computing environment comprising a plurality of processing nodes coupled together over a network. The method reduces the number of packets transmitted over a network between two or more nodes. The method includes the grouping of two or more I/O vectors into a single message, consisting of one packet with a predetermined maximum size, provided the sizes of the vectors are small enough to be placed into a single packet. The grouping method finds an efficient collection of vectors to form groups that fit inside a single packet. If two or more of the vectors can be combined so that the resulting single packet size does not exceed the predetermined maximum size, the vectors are grouped accordingly. Vectors whose size approach the predetermined maximum packet size are sent as a separate message.
Abstract:
FAST-1 and Smad2 or Smad3 form a complex that is specifically induced by signals generated by a TGF-&bgr; superfamily member. We have shown that a domain of FAST-1 directly interacts with Smad2 or Smad3, and that this interaction is mediated by specific domains of the two interacting molecules, namely, the MH2 domain of Smad2 or Smad3 and the Smad Interaction Domain (SID) of FAST-1. This result allows the development of methods and reagents for the isolation of compounds that are involved in, and/or modulate, TGF-&bgr; superfamily signalling.
Abstract:
Techniques are disclosed for distributing data in a content delivery network configured to provide edge services using a plurality of service providers. Data indicative of data usage and cost data for the plurality of service providers is accessed. Based on the accessed data, an effective unit cost, multiplex efficiency, and channel utilization are determined for a selected user. A Bayesian optimization algorithm is applied to at least a portion of the accessed data. The content delivery network is configured to redistribute data traffic for the selected user based on a result of the applied Bayesian optimization algorithm.
Abstract:
FIG. 1 is a front, right and top perspective view of an plank abdominal wheel, showing my design. FIG. 2 is a rear, left and bottom perspective view thereof. FIG. 3 is a front elevation view thereof. FIG. 4 is a rear elevation view thereof. FIG. 5 is a left side elevation view thereof. FIG. 6 is a right side elevation view thereof. FIG. 7 is a top plan view thereof. FIG. 8 is a bottom plan view thereof. FIG. 9 is an enlarged view of detail 9 in FIG. 1. FIG. 10 is an enlarged view of detail 10 in FIG. 2; and, FIG. 11 is another front, right and top perspective view of the plank abdominal wheel, wherein the two parts of the plank abdominal wheel are separated from each other. The dash-dash lines depict portions of the plank abdominal wheel that form no part of the claimed design. The dot-dash broken lines in FIGS. 1, 2, 9, and 10 depict the boundaries of the enlargements and form no part of the claimed design.
Abstract:
FIG. 1 is a front, right side, top perspective view of a cervical pillow showing my new design; FIG. 2 is a front elevational view thereof; FIG. 3 is a rear elevational view thereof; FIG. 4 is a left side elevational view thereof; FIG. 5 is a right side elevational view thereof; FIG. 6 is a top plan view thereof; and, FIG. 7 is a bottom plan view thereof.
Abstract:
Methods and apparatus measuring tissue nonlinear shear wave property are disclosed. When tissue shear responses are different to ultrasound radiation forces generated by pulses having different shapes, its nonlinear effect can be used to estimate tissue property at single location without measurements of group velocities or phase velocities. Ultrasound radiation force using a single tone burst pulse is applied to a selected location in a tissue region. The induced shear wave is detected in the region and its spectral distribution is calculated and analyzed. This detection may be repeated with other excitation pulses having different widths or different shapes at the same location. The spectral analysis of the detected shear wave is performed according to a nonlinear shear model for solving nonlinearity and viscoelasticity of the tissue at a single location in a tissue region. The detection location can be at one point at a time for imaging two-dimensional or three-dimensional tissue nonlinearities and shear wave properties. The property includes nonlinear magnitude variations, nonlinear phase variations, nonlinear coefficients, and viscoelasticity. The induced shear wave are detected at multiple locations along the shear propagation directions in the tissue region for calculating different shear group velocities and different shear phase velocities using different excitation pulses, and calculating nonlinearity and viscoelasticity. A difference between certain aspects of this disclosure and the prior art of ultrasound elastography is the utilization of nonlinear responses of the tissue shear property.